Skip to main content
Log in

Understanding the Role of Copper Addition in Low-Temperature Toughness of Low-Carbon, High-Strength Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, the effect of Cu addition on the microstructure and mechanical properties, in particular, low-temperature toughness, of low-carbon, high-strength steel was investigated. Steels with Cu concentrations varying from 1 to 2.5 wt pct in the place of carbon were prepared and then subjected to the two-step intercritical heat treatment. A mixed microstructure consisting of intercritical ferrite, tempered martensite, and retained austenite was obtained. There was an increased amount of retained austenite in the steels with Cu contents ranging from 0.23 to 2.5 wt pct. Therefore, Cu addition was beneficial for the stabilization of retained austenite. This phenomenon can be attributed to the enrichment of Cu in austenite and the increased driving force of reversed transformation caused by reduction in the T0 temperature (the temperature at which fcc austenite and bcc ferrite of identical composition have equal free energy). Furthermore, nanoscaled Cu precipitates were dispersed in the microstructure of Cu-containing steels. The combined effect of retained austenite and Cu precipitates could be the reason for excellent low-temperature toughness without loss in strength, which is featured by the impact energy of more than 120 J at 153 K (– 120 °C) for the Cu-containing steels. In addition to the deformation-induced transformation of retained austenite, bcc Cu precipitates act as misfit centers to improve the low-temperature toughness by enhancing the dislocation mobility and decreasing the ductile-to-brittle transformation temperature (DBTT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. THERMO-CALC is trademark of Thermo-Calc Software, Norra Stationsgatan, Sweden.

  2. INSTRON is trademark of Instron Co., Norwood, USA.

  3. TECNAI is a trademark of FEI, Hillsboro, OR.

REFERENCES

  1. S.W. Thompson: Mater. Sci. Eng. A, 2018, vol. 711, pp. 424–33.

    Article  CAS  Google Scholar 

  2. T. Montemarano, B. Sack, and J. Gudas: J. Ship Prod. Des., 1986, vol. 2, p. 18.

    Google Scholar 

  3. S. Vaynman, D. Isheim, R. Prakash-Kolli, S.P. Bhat, D.N. Seidman, and M.E. Fine: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 363–73.

    Article  CAS  Google Scholar 

  4. G. Han, Z.J. Xie, L. Xiong, C.J. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2017, vol. 705, pp. 89–97.

    Article  CAS  Google Scholar 

  5. X.H. Yu, J.L. Caron, S.S. Babu, J.C. Lippold, D. Isheim, and D.N. Seidman: Acta Mater., 2010, vol. 58, pp. 5596–5609.

    Article  CAS  Google Scholar 

  6. Y.U. Heo, Y.K. Kim, J.S. Kim, and J.K. Kim: Acta Mater., 2013, vol. 61, pp. 519–28.

    Article  CAS  Google Scholar 

  7. Y.X. Zheng, F.M. Wang, C.R. Li, Y.L. Li, and J. Cheng: Mater. Sci. Eng. A, 2018, vol. 712, pp. 453–65.

    Article  CAS  Google Scholar 

  8. S.K. Ghosh, A. Haldar, and P.P. Chattopadhyay: J. Mater. Sci., 2008, vol. 44, pp. 580–90.

    Article  Google Scholar 

  9. K. Kunishige, T. Hashimoto, and T. Yukitoshi: Tetsu-to-Hagané, 1980, vol. 66, pp. 63–72.

    Article  CAS  Google Scholar 

  10. K. Nakashima, Y. Futamura, T. Tsuchiyama, and S. Takaki: ISIJ Int., 2002, vol. 42, pp. 1541–45.

    Article  CAS  Google Scholar 

  11. K. Nakashima, K. Imakawa, Y. Futamura, T. Tsuchiyama, and S. Takaki. Mater. Sci. Forum, 2004, vol. 467, pp. 905–10.

    Article  Google Scholar 

  12. J.-Y. Kang, Y.-U. Heo, H. Kim, D.-W. Suh, D. Son, D.H. Lee, and T.-H. Lee: Mater. Sci. Eng. A, 2014, vol. 614, pp. 36–44.

    Article  CAS  Google Scholar 

  13. J. Weertman: J Appl. Phys., 1958, vol. 29, p. 1685.

    Article  CAS  Google Scholar 

  14. M. Fine, S. Vaynman, D. Isheim, Y. Chung, S. Bhat, and C. Hahin: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3318–25.

    Article  Google Scholar 

  15. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.

    Article  Google Scholar 

  16. N. Nakada, J. Syarif, T. Tsuchiyama, and S. Takaki: Mater. Sci. Eng. A, 2004, vol. 374, pp. 137–44.

    Article  Google Scholar 

  17. Z.B. Jiao, J.H. Luan, M.K. Miller, and C.T. Liu: Acta Mater., 2015, vol. 97, pp. 58–67.

    Article  CAS  Google Scholar 

  18. K. Sugimoto, N. Usui, M. Kobayashi, and S. Hashimoto: ISIJ Int., 1992, vol. 32, pp. 1311–18.

    Article  CAS  Google Scholar 

  19. R.D.K. Misra, Z. Jia, R. O’Malley, and S.J. Jansto: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8772–80.

    Article  CAS  Google Scholar 

  20. W.H. Zhou, H. Guo, Z.J. Xie, C.J. Shang, and R.D.K. Misra: Mater. Des., 2014, vol. 63, pp. 42–49.

    Article  CAS  Google Scholar 

  21. W.H. Zhou, H. Guo, Z.J. Xie, X.M. Wang, and C.J. Shang: Mater. Sci. Eng. A, 2013, vol. 587, pp. 365–71.

    Article  CAS  Google Scholar 

  22. Z.J. Xie, G. Han, W.H. Zhou, C.Y. Zeng, and C.J. Shang: Mater. Charact., 2016, vol. 113, pp. 60–66.

    Article  CAS  Google Scholar 

  23. G. Salje and M. Feller-Kniepmeier: J. Appl. Phys., 1977, vol. 48, pp. 1833–39.

    Article  CAS  Google Scholar 

  24. P. Cheng, B. Hu, S.L. Liu, H. Guo, M. Enomoto, and C.J. Shang: Mater. Sci. Eng. A, 2019, vol. 746, pp. 41–49.

    Article  CAS  Google Scholar 

  25. C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, and H. Dong: Scripta Mater., 2008, vol. 58, pp. 492–95.

    Article  CAS  Google Scholar 

  26. H.M. Flower and T.C. Lindley: Mater. Sci. Technol., 2013, vol. 16, pp. 26–40.

    Google Scholar 

  27. Z.J. Xie, Y.Q. Ren, W.H. Zhou, J.R. Yang, C.J. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 603, pp. 69–75.

    Article  CAS  Google Scholar 

  28. D.P. Yang, D. Wu, and H.L. Yi: Scripta Mater., 2019, vol. 161, pp. 1–5.

    Article  CAS  Google Scholar 

  29. E. Rasanen: Scand. J. Metall., 1973, vol. 2, pp. 257–64.

    CAS  Google Scholar 

  30. A.R.H. Far, S.H.M. Anijdan, and S.M. Abbasi: Mater. Sci. Eng. A, 2019, vol. 746, pp. 384–93.

    Article  CAS  Google Scholar 

  31. X.H. Xi, J.L. Wang, X. Li, L.Q. Chen, and Z.D. Wang: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2912–21.

    Article  Google Scholar 

  32. J. Shi, X.J. Sun, M.Q. Wang, W.J. Hui, H. Dong, and W.Q. Cao: Scripta Mater., 2010, vol. 63, pp. 815–18.

    Article  CAS  Google Scholar 

  33. T.L. Skoufari, D.N. Crowther, and B. Mintz: Mater. Sci. Technol., 1999, vol. 15, pp. 1069–79.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is financially supported by the National Key Research and Development Program of China (13th Five-Year Plan) under Contract No. 2016YFB0300601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqing Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 26, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, X., Wang, J., Chen, L. et al. Understanding the Role of Copper Addition in Low-Temperature Toughness of Low-Carbon, High-Strength Steel. Metall Mater Trans A 50, 5627–5639 (2019). https://doi.org/10.1007/s11661-019-05462-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05462-z

Navigation