Skip to main content

Advertisement

Log in

Crucial Microstructural Features to Determine the Mechanical Properties of Welded Joints in a Cu-Containing Low-Carbon Low-Alloy Steel After Postweld Heat Treatment

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of welding and postweld heat treatment on the microstructural characteristics and mechanical properties of a Cu-containing low-carbon low-alloy steel was studied. The obtained results indicated that ferrite, bainite, and coarse Cu-rich precipitates formed in the weld metal (WM) were responsible for its low impact energy of 57 J at − 40 °C. To obtain a good balance between strength and toughness in the WM, different heat treatments were employed. The obtained results demonstrated that direct tempering had a negligible effect on strength and toughness, but the addition of intercritical annealing to the conventional quenching and tempering process resulted in a significant increase in toughness and a slight decrease in tensile strength. The impact energy was increased to beyond 144 J, and the tensile strength was maintained at a high level of 958 MPa. The optimal microstructure benefiting both toughness and strength was found to primarily comprise intercritical ferrite, tempered martensite/bainite, reversed austenite, and fine Cu-rich precipitates. The toughening mechanism can be explained by the strain-induced martensitic transformation of reversed austenite and the retarding crack propagation effect of high-angle grain boundaries with a misorientation of more than 45 deg. The strengthening mechanism can be rationalized in terms of precipitation-strengthening and the strain-induced martensitic transformation of reversed austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H.J. Kong, C. Xu, C.C. Bu, C. Da, J.H. Luan, Z.B. Jiao, G. Chen, and C.T. Liu: Acta Mater., 2019, vol. 172, pp. 150–60.

    Article  CAS  Google Scholar 

  2. S. Vaynman, M. Fine, G. Ghosh, and S. Bhat: Proc. Fourth Mater. Eng. Conf., 1996, pp. 1551–60.

  3. S. Vaynman, D. Isheim, R. Prakash Kolli, S.P. Bhat, D.N. Seidman, and M.E. Fine: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 363–73.

    Article  CAS  Google Scholar 

  4. J. Farren, A. Hunter, J. Dupont, C. Robino, E. Kozeschnik, and D. Seidman: Weld. J., 2013, vol. 92, pp. 140-s-47-s.

    Google Scholar 

  5. X. Yu, J.L. Caron, S.S. Babu, J.C. Lippold, D. Isheim, and D.N. Seidman: Acta Mater., 2010, vol. 58, pp. 5596–5609.

    Article  CAS  Google Scholar 

  6. J.T. Bono, J.N. DuPont, D. Jain, S.-I. Baik, and D.N. Seidman: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5158–70.

    Article  Google Scholar 

  7. J.L. Caron, S.S. Babu, and J.C. Lippold: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 4032–44.

    Article  Google Scholar 

  8. A.S.H. Mousavi, K.M. Aghaie, A.R. Khoshakhlagh, A.R. Eivani, N. Park, and H.R. Jafarian: J. Mater. Res. Technol., 2021, vol. 15, pp. 5776–86.

    Article  Google Scholar 

  9. J.C.F. Jorge, L.F.G. de Souza, M.C. Mendes, I.S. Bott, L.S. Araújo, V.R. dos Santos, J.M.A. Rebello, and G.M. Evans: J. Mater. Res. Technol., 2021, vol. 10, pp. 471–501.

    Article  CAS  Google Scholar 

  10. T. Kawakubo, K. Ushioda, and H. Fujii: Mater. Sci. Eng. A, 2021, vol. 832, p. 142350.

    Article  Google Scholar 

  11. V.T.T. Miihkinen and D.V. Edmonds: in Fracture. S.R. Valluri, D.M.R. Taplin, P.R. Rao, J.F. Knott, and R. Dubey, eds., Pergamon, Oxford, 1984, pp. 1481–87.

    Chapter  Google Scholar 

  12. Y. Zou, Y.B. Xu, Z.P. Hu, S.Q. Chen, D.T. Han, R.D.K. Misra, and G.Z. Wang: Mater. Sci. Eng. A, 2017, vol. 707, pp. 270–79.

    Article  CAS  Google Scholar 

  13. X. Xi, J. Wang, L. Chen, and Z. Wang: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 5627–39.

    Article  Google Scholar 

  14. J. Hu, L.-X. Du, W. Xu, J.-H. Zhai, Y. Dong, Y.-J. Liu, and R.D.K. Misra: Mater. Charact., 2018, vol. 136, pp. 20–28.

    Article  CAS  Google Scholar 

  15. Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Guo, and C.J. Shang: Mater. Des., 2014, vol. 59, pp. 193–98.

    Article  CAS  Google Scholar 

  16. X. Xi, J. Wang, X. Li, L. Chen, and Z. Wang: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2912–21.

    Article  Google Scholar 

  17. J. Hu, J.-M. Zhang, G.-S. Sun, L.-X. Du, Y. Liu, Y. Dong, and R.D.K. Misra: J. Mater. Sci., 2019, vol. 54, pp. 6565–78.

    Article  CAS  Google Scholar 

  18. Y.Y. Song, X.Y. Li, L.J. Rong, D.H. Ping, F.X. Yin, and Y.Y. Li: Mater. Lett., 2010, vol. 64, pp. 1411–14.

    Article  CAS  Google Scholar 

  19. S.R.F. Lala, A. Gupta, and C. Srivastava: Metall. Mater. Trans. A, 2021, vol. 53, pp. 679–88.

    Article  Google Scholar 

  20. B. Cui, Y. Peng, L. Zhao, M. Peng, T. An, and C. Ma: ISIJ Int., 2016, vol. 56, pp. 132–39.

    Article  CAS  Google Scholar 

  21. Y. You, C. Shang, W. Nie, and S. Subramanian: Mater. Sci. Eng. A, 2012, vol. 558, pp. 692–701.

    Article  CAS  Google Scholar 

  22. Z.J. Xie, G. Han, W.H. Zhou, X.L. Wang, C.J. Shang, and R.D.K. Misra: Scripta Mater., 2018, vol. 155, pp. 164–68.

    Article  CAS  Google Scholar 

  23. M. Wang, Z.Y. Liu, and C.G. Li: Acta Metall. Sin., 2017, vol. 30, pp. 238–337.

    Article  CAS  Google Scholar 

  24. S. Zhou, Y. Zuo, Z. Li, X. Wang, and Q. Yong: Mater. Charact., 2016, vol. 119, pp. 110–13.

    Article  CAS  Google Scholar 

  25. G.R. Lehnhoff and K.O. Findley: JOM, 2014, vol. 66, pp. 756–64.

    Article  CAS  Google Scholar 

  26. P. Ren, X.P. Chen, L. Mei, Y.Y. Nie, and Q. Liu: Mater. Sci. Eng. A, 2020, vol. 775, p. 138984-.

    Article  CAS  Google Scholar 

  27. J. Hu, L.-X. Du, Y. Dong, Q.-W. Meng, and R.D.K. Misra: Mater. Charact., 2019, vol. 152, pp. 21–35.

    Article  CAS  Google Scholar 

  28. N. Nakada, T. Yamashita, J. Syarif, T. Tsuchiyama, and S. Takaki: Tetsu-to-Hagane, 2003, vol. 89, pp. 1050–56.

    Article  CAS  Google Scholar 

  29. X. Pan, G. Qian, and Y. Hong: Scripta Mater., 2021, vol. 194, p. 113631.

    Article  CAS  Google Scholar 

  30. W.D. Mu, Y. Cai, and M. Wang: Mater. Sci. Eng. A, 2021, vol. 819, p. 141418.

    Article  CAS  Google Scholar 

  31. M.I. Pascuet, E. Martínez, G. Monnet, and L. Malerba: J. Nucl. Mater., 2017, vol. 494, pp. 311–21.

    Article  CAS  Google Scholar 

  32. T. Zhou, H. Yu, and S. Wang: Mater. Sci. Eng. A, 2016, vol. 658, pp. 150–58.

    Article  CAS  Google Scholar 

  33. Y. You, C. Shang, L. Chen, and S. Subramanian: Mater. Sci. Eng. A, 2012, vol. 546, pp. 111–18.

    Article  CAS  Google Scholar 

  34. H. Qiu, L.N. Wang, J.G. Qi, H. Zuo, and K. Hiraoka: Mater. Sci. Eng. A, 2013, vol. 579, pp. 71–76.

    Article  CAS  Google Scholar 

  35. C. Wang, H. Ding, J. Zhang, and H.Y. Wu: Acta Metall. Sin., 2014, vol. 27, pp. 457–63.

    Article  CAS  Google Scholar 

  36. S.S. Xu, Y. Zhao, X. Tong, H. Guo, L. Chen, L.W. Sun, M. Peng, M.J. Chen, D. Chen, Y. Cui, G.A. Sun, S.M. Peng, and Z.W. Zhang: J. Alloys Compd., 2017, vol. 712, pp. 573–78.

    Article  CAS  Google Scholar 

  37. M.J. Yao, E. Welsch, D. Ponge, S.M.H. Haghighat, S. Sandlöbes, P. Choi, M. Herbig, I. Bleskov, T. Hickel, M. Lipinska-Chwalek, P. Shanthraj, C. Scheu, S. Zaefferer, B. Gault, and D. Raabe: Acta Mater., 2017, vol. 140, pp. 258–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 52101133) and the Science and Technology Projects of Zhanjiang with the Contract Nos. 2021E05003 and 2021B01039.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Xi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Dong, G., Li, Y. et al. Crucial Microstructural Features to Determine the Mechanical Properties of Welded Joints in a Cu-Containing Low-Carbon Low-Alloy Steel After Postweld Heat Treatment. Metall Mater Trans A 53, 3493–3505 (2022). https://doi.org/10.1007/s11661-022-06768-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06768-1

Navigation