Skip to main content

Advertisement

Log in

The Role of Intercritical Annealing in Enhancing Low-temperature Toughness of Fe-C-Mn-Ni-Cu Structural Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this article, an intercritical annealing (IA) process was introduced to the conventional quenching and tempering (QT) heat treatment for a Fe-C-Mn-Ni-Cu structural steel. The corresponding microstructures and mechanical properties of this steel were characterized by scanning electron microscope (SEM) equipped with electron back scattering diffraction (EBSD) and mechanical properties test. The results showed that IA process could lead to a considerable increase in low-temperature toughness for this steel. A mixed microstructure was obtained after IA process had been adopted containing intercritical ferrite and tempered martensite together with a small amount of retained austenite. This steel with mixed microstructure exhibited tensile strength of 961 MPa, relatively lower yield strength of 830 MPa, and a lower yield-to-tensile ratio (Y/T ratio) of 0.86, while a higher total elongation of 22.2 pct was achieved. The reason for this could be attributed to the multiple effect of multi-phase microstructure and deformation-induced transformation of the retained austenite during tensile deformation. The excellent low-temperature toughness was characterized by the Charpy impact energy as 183 J at 153 K (− 120 °C), which was associated with highly stable retained austenite and finer microstructure through reversed transformation during intercritical annealing treatment. These can be considered to increase the resistance to crack initiation and propagation and decrease the ductile-brittle transformation temperature (DBTT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Otani, H. Muraoka, S. Tsuruta, K. Hattori, H. Kawazoe: Nippon Steel Technical Report, 1993, vol. 58, pp. 1-8.

    Google Scholar 

  2. D. Liu, Q. Li, T. Emi: Metall. Mater. Trans. A, 2010, vol. 42, pp. 1349-61.

    Google Scholar 

  3. H.B. Liu, H.Q. Zhang, J.F. Li: Int. J. Press. Vessel. Pip., 2018, vol. 168, pp. 200-09.

    Article  Google Scholar 

  4. G.K. Tirumalasetty, M.A. van Huis, C.M. Fang, Q. Xu, F.D. Tichelaar, D.N. Hanlon, J. Sietsma, H.W. Zandbergen: Acta Mater., 2011, vol. 59, pp. 7406-15.

    Article  Google Scholar 

  5. Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda: ISIJ Int., 2004, vol. 44, pp. 1945-51.

    Article  Google Scholar 

  6. M.Y. Chen, M. Gouné, M. Verdier, Y. Bréchet, J.R. Yang: Acta Mater., 2014, vol. 64, pp. 78-92.

    Article  Google Scholar 

  7. S Vaynman, D Isheim, R PrakashKolli, SP Bhat, DN Seidman, ME Fine (2008) Metall. Mater. Trans. A 39:363-73.

    Article  Google Scholar 

  8. Y. Zhou, J. Chen, Y. Xu, Z. Liu: J Mater Sci Technol., 2013, vol. 29, pp. 168-74.

    Article  Google Scholar 

  9. Y. Zhou, T. Jia, X. Zhang, Z. Liu, R.D.K. Misra: Mater. Sci. Eng. A, 2015, vol. 626, pp. 352-61.

    Article  Google Scholar 

  10. H. Tagawa, T. Taira, K. Ume, T. Ishihara: Offshore Technology Conference, Houston, Texas, 1981, pp. 235-43.

    Google Scholar 

  11. Z.J. Xie, Y.P. Fang, Y. Cui, X.M. Wang, C.J. Shang, R.D.K. Misra: Mater. Sci. Technol., 2016, vol. 32, pp. 691-96.

    Article  Google Scholar 

  12. A. Nagao, T. Ito, T. Obinata: JFE Technical Report, 2008, vol. 11, pp. 13-18.

    Google Scholar 

  13. C. Sun, S.L. Liu, R.D.K. Misra, Q. Li, D.H. Li: Mater. Sci. Eng. A, 2018, vol. 711, pp. 484-91.

    Article  Google Scholar 

  14. S.P. Rawal, J. Gurland: Metall. Trans. A, 1977, vol. 8, pp. 691-98.

    Article  Google Scholar 

  15. Y. Nagai, H. Fukami, H. Inoue, A. Date, T. Nakashima, A. Kojima, A. Toshihiko: Nippon Steel Technical Report, 2004, vol. 90, pp. 14-19

    Google Scholar 

  16. D. Liu, B. Cheng, M. Luo: ISIJ Int., 2011, vol. 51, pp. 603-11.

    Article  Google Scholar 

  17. P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, N. Parvin: Mater. Sci. Eng. A, 2009, vol. 518, pp. 1-6.

    Article  Google Scholar 

  18. J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, W. Cao: Scr. Mater., 2010, vol. 63, pp. 815-18.

    Article  Google Scholar 

  19. J.I. Kim, C.K. Syn, J.W. Morris: Metall. Trans. A, 1983, vol. 14, pp. 93-103.

    Article  Google Scholar 

  20. R.L. Miller: Metall. Mater. Trans. B, 1972, vol. 3, pp. 905-12.

    Article  Google Scholar 

  21. J. Hu, L. Du, W. Xu, J. Zhai, Y. Dong, Y. Liu, R.D.K. Misra: Mater. Charact., 2018, vol. 136, pp. 20-28.

    Article  Google Scholar 

  22. J. Chiang, B. Lawrence, J.D. Boyd, A.K. Pilkey: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4516-21.

    Article  Google Scholar 

  23. W.H. Zhou, V.S.A. Challa, H. Guo, C.J. Shang, R.D.K. Misra: Mater. Sci. Eng. A, 2015, vol. 620, pp. 454-62.

    Article  Google Scholar 

  24. Z.J. Xie, G. Han, W.H. Zhou, C.Y. Zeng, C.J. Shang: Mater. Charact., 2016, vol. 113, pp. 60-66.

    Article  Google Scholar 

  25. Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Guo, C.J. Shang: Mater. Des., 2014, vol. 59, pp. 193-98.

    Article  Google Scholar 

  26. H Shirazi, G Miyamoto, S HosseinNedjad, H GhasemiNanesa, M NiliAhmadabadi, T Furuhara (2013) J Alloy and Compd. 577:S572-S77.

    Article  Google Scholar 

  27. S. Wang, H. Yu, H. Gu, T. Zhou, L. Wang: Mater. Sci. Eng. A, 2019, vol. 744, pp. 299-304.

    Article  Google Scholar 

  28. H. Liu, L.X. Du, J. Hu, H.Y. Wu, X.H. Gao, R.D.K. Misra: J. Alloy. Compd., 2017, vol. 695, pp. 2072-82.

    Article  Google Scholar 

  29. R. Song, D. Ponge, D. Raabe: Acta Mater., 2005, vol. 53, pp. 4881-92.

    Article  Google Scholar 

  30. T. Hanamura, F. Yin, K. Nagai: ISIJ Int., 2004, vol. 44, pp. 610-17.

    Article  Google Scholar 

  31. R. Song, D. Ponge, D. Raabe, J.G. Speer, D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1-17.

    Article  Google Scholar 

  32. N.S. Stoloff: Chapter 1-Effects of alloying on fracture characteristics, Elsevier Inc., USA, 1969, pp. 1-81.

    Google Scholar 

  33. N.J. Petch: Proceedings of an International Conference on the Atomic Mechanisms of Fracture, Swampscott, Mass, 1959, pp. 54–64.

  34. G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, B. Bai: Acta Mater., 2014, vol. 76, pp. 425-33.

    Article  Google Scholar 

  35. G. Thomas: Metall. Trans. A, 1978, vol. 9, pp. 439-50.

    Article  Google Scholar 

  36. T. Masumura, N. Nakada, T. Tsuchiyama, S. Takaki, T. Koyano, K. Adachi: Acta Mater., 2015, vol. 84, pp. 330-38.

    Article  Google Scholar 

  37. P.J. Brofman, G.S. Ansell: Metall. Mater. Trans. A, 1978, vol. 9, pp. 879-80.

    Article  Google Scholar 

  38. A.A. Gorni: Steel Forming and heat treating handbook, São Vicente SP, Brazil, 2015.

  39. M.T. Kim, T.M. Park, K.H. Baik, W.S. Choi, P.P. Choi, J. Han: Acta Mater., 2019, vol. 164, pp. 122-34.

    Article  Google Scholar 

  40. B. Fultz, J.I. Kim, Y.H. Kim, H.J. Kim, G.O. Fior, J.W. Morris: Metall. Trans. A, 1985, vol. 16, pp. 2237-49.

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Key Research and Development Program of China (13th Five-Year Plan) with the Contract No. 2016YFB0300601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqing Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 9, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, X., Wang, J., Li, X. et al. The Role of Intercritical Annealing in Enhancing Low-temperature Toughness of Fe-C-Mn-Ni-Cu Structural Steel. Metall Mater Trans A 50, 2912–2921 (2019). https://doi.org/10.1007/s11661-019-05211-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05211-2

Navigation