Skip to main content
Log in

Effect of Solid Solution Elements on Solubility Products of Carbides and Nitrides in Austenite: Thermodynamic Calculations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To provide guidance on composition design of steel through control of the fraction of carbide or nitride precipitates in austenization, the effects of solid solution elements on solubility products of titanium, niobium, and vanadium carbides and nitrides in austenite were investigated by thermodynamic calculations using the two sublattice model. Solubility products of the carbides and nitrides in pure austenite were calculated, and the results were highly consistent with findings of previous studies. Solubility products of the carbides and nitrides in austenite containing different solid solution elements were evaluated and, in general, were also consistent with the reports of previous studies. Solubility products of titanium, niobium, and vanadium carbides and nitrides in austenite containing solid solution elements, on the condition that the total alloy content is relatively small, are given as follows:

$$ \log^{\gamma } K_{\text{TiC}} = 3.77 - \frac{8339}{T} + \left( { -\, 0.002 + \frac{14.2}{T}} \right)\left[ {\text{wt pct Mn}} \right] + \left( { -\, 0.009 + \frac{84.6}{T}} \right)\left[ {\text{wt pct Ni}} \right] + \left( {0.019 + \frac{12.3}{T}} \right)\left[ {\text{wt pct Cr}} \right] + \left( { -\, 0.017 + \frac{52.1}{T}} \right)\left[ {\text{wt pct Mo}} \right] $$
$$ \log^{\gamma } K_{\text{NbC}} = 3.72 - \frac{8534}{T} + \left( {0.004 + \frac{3.0}{T}} \right)\left[ {\text{wt pct Mn}} \right] + \left( {0.013 + \frac{35.1}{T}} \right)\left[ {\text{wt pct Ni}} \right] + \left( {0.010 + \frac{41.2}{T}} \right)\left[ {\text{wt pct Cr}} \right] + \left( { -\, 0.013 + \frac{40.4}{T}} \right)\left[ {\text{wt pct Mo}} \right] $$
$$ \log^{\gamma } K_{\text{VC}} = 4.70 - \frac{7041}{T} + \left( { -\,0.004 + \frac{18.6}{T}} \right)\left[ {\text{wt pct Mn}} \right] + \left( { - \,0.004 + \frac{37.0}{T}} \right)\left[ {\text{wt pct Ni}} \right] + \left( {0.003 + \frac{52.8}{T}} \right)\left[ {\text{wt pct Cr}} \right] + \left( { - \,0.036 + \frac{63.4}{T}} \right)\left[ {\text{wt pct Mo}} \right] $$
$$ \log^{\gamma } K_{\text{TiN}} = 4.37 - \frac{15029}{T} + \left( {0.009 + \frac{36.5}{T}} \right)\left[ {\text{wt pct Mn}} \right] + \left( { -\, 0.014 + \frac{73.4}{T}} \right)\left[ {\text{wt pct Ni}} \right] + \left( {0.004 + \frac{122.9}{T}} \right)\left[ {\text{wt pct Cr}} \right] + \left( { -\, 0.002 + \frac{37.3}{T}} \right)\left[ {\text{wt pct Mo}} \right] $$
$$ \log^{\gamma } K_{\text{NbN}} = 3.94 - \frac{10036}{T} + \left( {0.015 + \frac{25.2}{T}} \right)\left[ {\text{wt pct Mn}} \right] + \left( {0.008 + \frac{23.9}{T}} \right)\left[ {\text{wt pct Ni}} \right] + \left( { - \,0.004 + \frac{151.8}{T}} \right)\left[ {\text{wt pct Cr}} \right] + \frac{34.1}{T}\left[ {\text{wt pct Mo}} \right] $$
$$ \log^{\gamma } K_{\text{VN}} = 3.33 - \frac{8278}{T} + \left( {0.007 + \frac{40.6}{T}} \right)\left[ {\text{wt pct Mn}} \right] + \left( { - \,0.009 + \frac{26.0}{T}} \right)\left[ {\text{wt pct Ni}} \right] + \left( { - \,0.012 + \frac{163.5}{T}} \right)\left[ {\text{wt pct Cr}} \right] + \left( { - \,0.023 + \frac{57.1}{T}} \right)\left[ {\text{wt pct Mo}} \right] $$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\( X_{i} ,X_{{i^{\prime}}} \) :

i-th and \( i^{\prime} \)-th (\( i^{\prime} < i \)) solid solution elements (not compound-formed elements) in austenite, the atoms of which occupy the first sublattice

\( M \) :

Binary compound-formed element, the atoms of which occupy the first sublattice

\( N \) :

Binary compound-formed element, the atoms of which occupy the second sublattice

\( {\text{Va}} \) :

Vacancy, which occupies the second sublattice

\( G^{\gamma } \) :

Gibbs energy of γ phase (J/mol)

\( ^{\text{mg}} G^{\gamma } \) :

Magnetic contribution to Gibbs energy of γ phase (J/mol)

\( j,j^{\prime} \) :

Element types in first sublattice (in the order of \( {\text{Fe}} \),\( X_{1} \), \( X_{2} \), \( \cdots \) and \( M \), where the sequence number of \( j^{\prime} \) is smaller than that of \( j \))

\( k,k^{\prime} \) :

Element types in second sublattice (in the order of \( N \) and \( {\text{Va}} \), where the sequence number of \( k^{\prime} \) is smaller than that of \( k \))

\( ^\circ G_{j:k}^{\text{fcc}} \) :

Gibbs energy of face-centered cubic (fcc) phase where the first and second sublattices are filled with j atoms and k atoms, respectively (J/mol)

\( \mu_{j:k}^{\text{fcc}} \) :

Chemical potential of fcc phase where the first and second sublattices are filled with j atoms and k atoms, respectively (J/mol)

\( \mu_{j}^{\text{fcc}} \) :

Chemical potential of j element in fcc phase

\( \mu_{k}^{\text{fcc}} \) :

Chemical potential of k element in fcc phase

\( L_{ }^{\text{fcc}} \) :

Interaction parameter of fcc phase (in the subscripts of \( L_{ }^{\text{fcc}} \), components in different sublattices are separated by a colon and components in the same sublattice are separated by a comma) (J/mol)

\( y_{j}^{\gamma } \) :

Site fraction of j atoms in the first sublattice in austenite

\( y_{k}^{\gamma } \) :

Site fraction of k atoms in the second sublattice in austenite

\( T \) :

Temperature (K)

\( R \) :

Universal gas constant (J/mol K)

\( x_{m}^{ } \) :

Mole fraction of m element in the system

\( \left[ {{\text{wt pct }}m} \right] \) :

Mass percentage of m element in austenite

\( A_{m} \) :

Relative atomic mass of m element

\( { \log }^{\gamma } K_{{MN}}^{0} \) :

Logarithmic solubility product of binary compound \( {{MN}} \) in pure austenite in \( {\text{Fe}} - {{M}} - {{N}} \) system

\( { \log }^{\gamma } K_{{MN}}^{{X_{i} }} \) :

Logarithmic solubility product of binary compound \( {{MN}} \) in austenite in \( {\text{Fe}} - X_{i} - {{M}} - {{N}} \) system

\( \Delta { \log }^{\gamma } K_{{MN}}^{{X_{i} }} \) :

Increment of logarithmic solubility product of binary compound \( {{MN}} \) in austenite upon addition of solid solution element \( X_{i} \)

\( { \log }^{\gamma } K_{{MN}} \) :

Logarithmic solubility product of binary compound \( {{MN}} \) in austenite in \( {\text{Fe}} - X_{1} - X_{2} - \ldots - {{M}} - {{N}} \) system

References

  1. [1] M. Takano: J. Nucl. Mater., 2013, vol. 440, pp. 489-94.

    Article  Google Scholar 

  2. [2] H. Wada: ISIJ Int., 1987, vol. 27, pp. 649-57.

    Article  Google Scholar 

  3. [3] E.J. Pavlina, J.G. Speer, and C.J. Van Tyne: Scripta Mater., 2012, vol. 66, pp. 243-46.

    Article  Google Scholar 

  4. [4] V.V. Popov and I.I. Gorbachev: Fizika Metallov i Metallovedenie, 2004, vol. 98, pp. 11-21.

    Google Scholar 

  5. [5] V.V. Popov and I.I. Gorbachev: Fizika Metallov i Metallovedenie, 2005, vol. 99, pp. 69-82.

    Google Scholar 

  6. [6] I.I. Gorbachev and V.V. Popov: Phys. Met. Metallogr., 2010, vol. 110, pp. 52-61.

    Article  Google Scholar 

  7. [7] I.I. Gorbachev and V.V. Popov: Phys. Met. Metallogr., 2009, vol. 108, pp. 484-95.

    Article  Google Scholar 

  8. [8] I.I. Gorbachev, V.V. Popov and A.Y. Pasynkov: Phys. Met. Metallogr., 2016, vol. 117, pp.1226-36.

    Article  Google Scholar 

  9. [9] K. Inoue, N. Ishikawa, I. Ohnuma, H. Ohtani and K. Ishida: ISIJ Int., 2001, vol. 41, pp. 175-82.

    Article  Google Scholar 

  10. [10] U.D. Veryatin, V.P. Mashirev, N.G. Ryabtsev, V.I. Tarasov, B.D. Rogozkin and I.V. Korobov: Thermodynamic Properties of Inorganic Substances, Atomizdat, Moscow, 1965.

    Google Scholar 

  11. M. Binnewies and E. Milke: Thermochemical Data of Elements and Compounds. Wiley-VCH, New York 1999.

    Google Scholar 

  12. [12] A. Dinsdale: Calphad, 1991, 15(4), 317-25.

    Article  Google Scholar 

  13. [13] C. Qiu: Metal. Trans. A, 1993, vol. 24, pp. 629-45.

    Article  Google Scholar 

  14. [14] S. Hertzman and M. Jarl: Metal. Mat. Trans. A, 1987, vol. 18, pp.1745-52.

    Article  Google Scholar 

  15. [15] W. Huang: Metal. Trans. A, 1991, vol. 22, pp. 1911-20.

    Article  Google Scholar 

  16. [16] M. Hillert and C. Qiu: Metal. Trans. A, 1991, vol. 22, pp. 2187-98.

    Article  Google Scholar 

  17. [17] M. Hillert and C. Qiu: J Phase Equilib., 1992, vol. 13, pp. 512-21.

    Article  Google Scholar 

  18. [18] S. Hertzman: Metal. Trans. A, 1987, vol. 18, pp. 1767-78.

    Article  Google Scholar 

  19. [19] S. Atamert and J.E. King: Acta Metallurgica et Materialia, 1991, vol. 39, pp. 273-85.

    Article  Google Scholar 

  20. [20] K. Frisk: Calphad, 1991, vol. 15, pp. 79-06.

    Article  Google Scholar 

  21. [21] K. Balasubramanian, A. Kroupa and J.S. Kirkaldy: Metal. Trans. A, 1992, vol. 23, pp. 729-44.

    Article  Google Scholar 

  22. A. Kroupa, J. Havránková, M. Svoboda, M. Coufalová and J. Vřešt’Ál: J Phase Equilib., 2001, vol. 22, pp. 312–23.

  23. [23] K. Santhy and K.H. Kumar: J Alloy Compd., 2015, vol. 15, pp. 733-47.

    Article  Google Scholar 

  24. [24] J.H. Shim, C.S. Oh, D.N. Lee: Metal. Mat. Trans. B, 1996, vol. 27, pp. 955-66.

    Article  Google Scholar 

  25. [25] K. J. Irvine, F. B. Pickering and T. Gladman: J Iron Steel Inst., 1967, vol. 205, pp. 161-82.

    Google Scholar 

  26. [26] H. Ohtani, T. Tanaka, M. Hasebe and T. Nishizawa: Calphad, 1988, vol. 12, pp. 225-46.

    Article  Google Scholar 

  27. [27] K. Balasubramanian, A. Kroupa and J.S. Kirkaldy: Metal. Trans. A, 1992, vol. 23, pp. 709-27.

    Article  Google Scholar 

  28. [28] S. Akamatsu, M. Hasebe, T. Senuma, Y. Matsumura and O. Kisue: ISIJ Int., 1994, vol. 34, pp. 9-16.

    Article  Google Scholar 

  29. [29] S. Koyama, T. Ishii and K. Narita: Tetsu-to-Hagané, 1971, vol. 35, pp. 1089-06.

    Google Scholar 

  30. [30] T. Mori, M. Tokizane, K. Yamaguchi, E. Sunami and Y. Nakazima: Tetsu-to-Hagané, 1968, vol. 54, pp. 763-76.

    Article  Google Scholar 

  31. [31] J.A. Todd and P. Li: Metal. Trans. A, 1986, vol. 17, pp. 1191-02.

    Article  Google Scholar 

  32. [32] J. Kunze: Metal. Sci., 1982, vol. 1, pp. 217-18.

    Google Scholar 

  33. [33] H. Wada and R.D. Pehlke: Metal. Trans. B, 1985, vol. 16, pp. 815-22.

    Article  Google Scholar 

  34. [34] J. Kunze, B. Beyer, S. Oswald and W. Gruner: Steel Res., 1995, vol. 66, pp. 161-66.

    Article  Google Scholar 

  35. [35] K. Inoue, I. Ohnuma, H. Ohtani, K. Ishida and T. Nishizawa: ISIJ Int., 1998, vol. 38, pp. 991-97.

    Article  Google Scholar 

  36. [36] R.P. Smith: Trans. AIME, 1962, vol. 224, p. 190-98.

    Google Scholar 

  37. [37] H. Ohtani and M. Hillert: Calphad, 1991, vol. 15, pp. 25-39.

    Article  Google Scholar 

  38. W. Roberts and A. Sandberg: Swedish Institute for Metals Research Report, No. IM-1489, Stockholm, 1980, pp.301-06.

  39. [39] M. Tamura, K. Ikeda, H. Esaka and K. Shinozuka: ISIJ Int., 2001, vol. 41, pp. 908-14.

    Article  Google Scholar 

  40. [40] A.V. Khvan and B. Hallstedt: Calphad, 2012, vol. 39, pp. 62-69.

    Article  Google Scholar 

  41. [41] S. Koyama, T. Ishii and K. Narita: Tetsu-to-Hagané, 1971, vol. 35, pp. 698-08.

    Google Scholar 

  42. [42] M. Tamura, H. Iida, H. Esaka and K. Shinozuka: ISIJ Int., 2003, vol. 43, pp. 1807-13.

    Article  Google Scholar 

  43. [43] C. Scott, B. Remy, J.L. Collet, A. Cael, C. Bao, F. Danoix, B. Malard and C. Curfs: Int. J Mat. Res., 2011, vol. 102, pp. 538-49.

    Article  Google Scholar 

  44. [44] A.V. Khvan, B. Hallstedt and K. Chang: Calphad, 2012, vol. 39, pp. 54-61.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a start-up fund for new researchers of Jiangxi University of Science and Technology (Grant No. jxxjbs18037), the department of Science and Technology of Jiangxi Province (Post-doctoral fund under Grant No. 3205700012 and High-level talent fund under Grant No. 3401223254), and National Natural Science Foundation of China (Grant No. 51871114 and 51804138). We thank the editing team from Liwen Bianji, Edanz Editing China, for editing the English text of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Hui Zhang or Tong-Xiang Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 23, 2018.

Appendix

Appendix

See Tables AI and AII.

Table AI Thermodynamic Parameters of Gibbs Energies
Table AII Thermodynamic Interaction Parameters
$$ \frac{{\partial G^{\gamma } }}{{\partial y_{{{\text{Fe}}}}^{\gamma } }} = y_{{{N}}}^{\gamma } \,^{^\circ } G_{{{\text{Fe}}:{{N}}}}^{{{\text{fcc}}}} + y_{{{\text{Va}}}}^{\gamma } \,^{^\circ } G_{{{\text{Fe}}:{\text{Va}}}}^{{{\text{fcc}}}} + + ~RT\left( {{\text{ln}}y_{{{\text{Fe}}}}^{\gamma } + 1} \right) + y_{{{N}}}^{\gamma } y_{{{\text{Va}}}}^{\gamma } L_{{{\text{Fe}}:{{N}},{\text{Va}}}}^{{{\text{fcc}}}} + y_{{{M}}}^{\gamma } y_{{{N}}}^{\gamma } L_{{{\text{Fe}},{{M}}:{{N}}}}^{{{\text{fcc}}}} + y_{{{M}}}^{\gamma } y_{{{\text{Va}}}}^{\gamma } L_{{{\text{Fe}},{{M}}:{\text{Va}}}}^{{{\text{fcc}}}} + \mathop \sum \limits_{i} y_{{X_{i} }}^{\gamma } y_{N}^{\gamma } L_{{{\text{Fe}},X_{i} :N}}^{{{\text{fcc}}}} + \mathop \sum \limits_{i} y_{{X_{i} }}^{\gamma } y_{{{\text{Va}}}}^{\gamma } L_{{{\text{Fe}},X_{i} :{\text{Va}}}}^{{{\text{fcc}}}} $$
(A1a)
$$ \frac{{\partial G^{\gamma } }}{{\partial y_{{X_{i} }}^{\gamma } }} = y_{{N}}^{\gamma } \;^{\circ } G_{{X_{i} :{{N}}}}^{\text{fcc}} + y_{\text{Va}}^{\gamma } \;^{\circ } G_{{X_{i} :{\text{Va}}}}^{\text{fcc}} + RT\left( {\ln y_{{X_{i} }}^{\gamma } + 1} \right) + y_{{N}}^{\gamma } y_{\text{Va}}^{\gamma } L_{{X_{i} :{{N}},{\text{Va}}}}^{\text{fcc}} + y_{\text{Fe}}^{\gamma } y_{{N}}^{\gamma } L_{{{\text{Fe}},X_{i} :{{N}}}}^{\text{fcc}} + \mathop \sum \limits_{{i^{\prime}}} y_{{X_{{i^{\prime}}} }}^{\gamma } y_{{N}}^{\gamma } L_{{X_{{i^{\prime}}} ,X_{i} :{{N}}}}^{\text{fcc}} + y_{{M}}^{\gamma } y_{{N}}^{\gamma } L_{{X_{i} ,{{M}}:{{N}}}}^{\text{fcc}} + y_{\text{Fe}}^{\gamma } y_{\text{Va}}^{\gamma } L_{{{\text{Fe}},X_{i} :{\text{Va}}}}^{\text{fcc}} + \mathop \sum \limits_{{i^{\prime}}} y_{{X_{{i^{\prime}}} }}^{\gamma } y_{\text{Va}}^{\gamma } L_{{X_{{i^{\prime}}} ,X_{i} :{\text{Va}}}}^{\text{fcc}} + y_{{M}}^{\gamma } y_{{N}}^{\gamma } L_{{X_{i} ,{{M}}:{\text{Va}}}}^{\text{fcc}} . $$
(A1b)
$$ \frac{{\partial G^{\gamma } }}{{\partial y_{{M}}^{\gamma } }} = y_{{N}}^{\gamma } \;^{\circ } G_{M:{{N}}}^{\text{fcc}} + y_{\text{Va}}^{\gamma } \;^{\circ } G_{{M:{\text{Va}}}}^{\text{fcc}} + RT\left( {{ \ln }y_{{M}}^{\gamma } + 1} \right) + y_{{N}}^{\gamma } y_{\text{Va}}^{\gamma } L_{{M:{{N}},{\text{Va}}}}^{\text{fcc}} + y_{\text{Fe}}^{\gamma } y_{{N}}^{\gamma } L_{{{\text{Fe}},M:{{N}}}}^{\text{fcc}} + y_{\text{Fe}}^{\gamma } y_{\text{Va}}^{\gamma } L_{{{\text{Fe}},M:{\text{Va}}}}^{\text{fcc}} + \mathop \sum \limits_{i} y_{{X_{i} }}^{\gamma } y_{{N}}^{\gamma } L_{{X_{i} ,M:{{N}}}}^{\text{fcc}} + \mathop \sum \limits_{i} y_{{X_{i} }}^{\gamma } y_{\text{Va}}^{\gamma } L_{{X_{i} ,M:{\text{Va}}}}^{\text{fcc}} . $$
(A1c)
$$ \frac{{\partial G^{\gamma } }}{{\partial y_{{N}}^{\gamma } }} = y_{\text{Fe}}^{\gamma } \;^{\circ } G_{{{\text{Fe}}:{{N}}}}^{\text{fcc}} + \mathop \sum \limits_{i} y_{{X_{i} }}^{\gamma } \;^{\circ } G_{{X_{i} :{{N}}}}^{\text{fcc}} + y_{{M}}^{\gamma } \;^{\circ } G_{M:{{N}}}^{\text{fcc}} + RT\left( {{ \ln }y_{{N}}^{\gamma } + 1} \right) + y_{\text{Fe}}^{\gamma } y_{\text{Va}}^{\gamma } L_{{{\text{Fe}}:{{N}},{\text{Va}}}}^{\text{fcc}} + \mathop \sum \limits_{i} y_{{X_{i} }}^{\gamma } y_{\text{Va}}^{\gamma } L_{{X_{i} :{{N}},{\text{Va}}}}^{\text{fcc}} + y_{{M}}^{\gamma } y_{\text{Va}}^{\gamma } L_{{M:{{N}},{\text{Va}}}}^{\text{fcc}} + \mathop \sum \limits_{i} y_{\text{Fe}}^{\gamma } y_{{X_{i} }}^{\gamma } L_{{{\text{Fe}},X_{i} :{{N}}}}^{\text{fcc}} + \mathop \sum \limits_{i} y_{{X_{i} }}^{\gamma } \mathop \sum \limits_{{i^{\prime}}} y_{{X_{{i^{\prime}}} }}^{\gamma } L_{{X_{i} ,X_{{i^{\prime}}} :{{N}}}}^{\text{fcc}} + \mathop \sum \limits_{i} y_{{X_{i} }}^{\gamma } y_{{M}}^{\gamma } L_{{X_{i} ,M:{{N}}}}^{\text{fcc}} + y_{\text{Fe}}^{\gamma } y_{{M}}^{\gamma } L_{{{\text{Fe}},{{M}}:{{N}}}}^{\text{fcc}} $$
(A1d)
$$ \frac{{\partial G^{\gamma } }}{{\partial y_{\text{Va}}^{\gamma } }} = y_{\text{Fe}}^{\gamma } \;^{\circ } G_{{{\text{Fe}}:{\text{Va}}}}^{\text{fcc}} + \mathop \sum \limits_{i} y_{{X_{i} }}^{\gamma } \;^{\circ } G_{{X_{i} :{\text{Va}}}}^{\text{fcc}} + y_{{M}}^{\gamma } \;^{\circ } G_{{{{M}}:{\text{Va}}}}^{\text{fcc}} + RT\left( {{ \ln }y_{\text{Va}}^{\gamma } + 1} \right) + y_{\text{Fe}}^{\gamma } y_{{N}}^{\gamma } L_{{{\text{Fe}}:{{N}},{\text{Va}}}}^{\text{fcc}} + \mathop \sum \nolimits_{i} y_{{X_{i} }}^{\gamma } y_{{N}}^{\gamma } L_{{X_{i} :{{N}},{\text{Va}}}}^{\text{fcc}} + y_{{M}}^{\gamma } y_{{N}}^{\gamma } L_{{{{M}}:{{N}},{\text{Va}}}}^{\text{fcc}} + \mathop \sum \nolimits_{i} y_{\text{Fe}}^{\gamma } y_{{X_{i} }}^{\gamma } L_{{{\text{Fe}},X_{i} :{\text{Va}}}}^{\text{fcc}} + \mathop \sum \limits_{i} y_{{X_{i} }}^{\gamma } \mathop \sum \nolimits_{{i^{\prime}}} y_{{X_{{i^{\prime}}} }}^{\gamma } L_{{X_{i} ,X_{{i^{\prime}}} :{\text{Va}}}}^{\text{fcc}} + \mathop \sum \limits_{i} y_{{X_{i} }}^{\gamma } y_{{M}}^{\gamma } L_{{X_{i} ,{{M}}:{\text{Va}}}}^{\text{fcc}} + \mathop \sum \nolimits_{i} y_{{X_{i} }}^{\gamma } y_{{M}}^{\gamma } L_{{X_{i} ,{{M}}:{\text{Va}}}}^{\text{fcc}} + y_{\text{Fe}}^{\gamma } y_{{M}}^{\gamma } L_{{{\text{Fe}},{{M}}:{\text{Va}}}}^{\text{fcc}} $$
(A1e)
$$ \begin{aligned} \log {}_{~}^{\gamma } K_{{{MN}}}^{~} - \log {}_{~}^{\gamma } K_{{{MN}}}^{0} = \left[{{\mathop \sum \nolimits_{i} x_{{X_{i} }}^{~} (^\circ G_{{{\text{Fe}}:{{N}}}}^{\text{fcc}} - ^\circ G_{{{\text{Fe}}:{\text{Va}}}}^{\text{fcc}} ) - \mathop \sum \limits_{i} x_{{X_{i} }}^{~} (^\circ G_{{X_{i} :{{N}}}}^{\text{fcc}} - ^\circ G_{{X_{i} :{\text{Va}}}}^{\text{fcc}} ) + \mathop \sum \limits_{i} x_{{X_{i} }}^{~} L_{{{\text{Fe}},{{M}}:{\text{Va}}}}^{\text{fcc}} - \mathop \sum \limits_{i} x_{{X_{i} }}^{~} L_{{X_{i} ,{{M}}:{\text{Va}}}}^{\text{fcc}} + \mathop \sum \limits_{i} x_{{X_{i} }}^{~} L_{{{\text{Fe}},X_{i} :{\text{Va}}}}^{\text{fcc}} - \left( {\mathop \sum \limits_{i} x_{{X_{i} }}^{~} L_{{X_{i} :{{N}},{\text{Va}}}}^{\text{fcc}} - \mathop \sum \limits_{i} x_{{X_{i} }}^{~} L_{{{\text{Fe}}:{{N}},{\text{Va}}}}^{\text{fcc}} } \right) - \mathop \sum \limits_{i} x_{{X_{i} }}^{~} \left( {L_{{{\text{Fe}},X_{i} :{{N}}}}^{\text{fcc}} - L_{{{\text{Fe}},X_{i} :{\text{Va}}}}^{\text{fcc}} } \right) - \mathop \sum \limits_{i} x_{{X_{i} }}^{~} \mathop \sum \limits_{i} x_{{X_{i} }}^{~} L_{{{\text{Fe}},X_{i} :{\text{Va}}}}^{\text{fcc}} + \mathop \sum \limits_{i} x_{{X_{i} }}^{~} \mathop \sum \limits_{i} x_{{X_{i} }}^{~} \left( {L_{{{\text{Fe}},X_{i} :{{N}}}}^{\text{fcc}} - L_{{{\text{Fe}},X_{i} :{\text{Va}}}}^{\text{fcc}} } \right)}}\right]/{{RT\ln 10}}+ \log \frac{{A_{{{\text{Fe}}}} ^{2} }}{{\left[ {A_{{{\text{Fe}}}} \left( {1 - \sum\nolimits_{i} {x_{{X_{i} }} } } \right) + \sum\nolimits_{i} {x_{{X_{i} }} A_{{X_{i} }} } } \right]^{2} }} = \left[ {\mathop \sum \limits_{i} x_{{X_{i} }}^{~} (^\circ G_{{{\text{Fe}}:{{N}}}}^{\text{fcc}} - ^\circ G_{{{\text{Fe}}:{\text{Va}}}}^{\text{fcc}} ) - \mathop \sum \limits_{i} x_{{X_{i} }}^{~} (^\circ G_{{X_{i} :{{N}}}}^{\text{fcc}} - ^\circ G_{{X_{i} :{\text{Va}}}}^{\text{fcc}} ) + \mathop \sum \limits_{i} x_{{X_{i} }}^{~} L_{{\text{Fe}},{M}:{\text{Va}}}^{\text{fcc}} - \mathop \sum \limits_{i} x_{{X_{i} }}^{~} L_{{X_{i} ,{{M}:{\text{Va}}}}}^{\text{fcc}} + \mathop \sum \limits_{i} x_{{X_{i} }}^{~} L_{{{\text{Fe}},X_{i} :{\text{Va}}}}^{\text{fcc}} - \left( {\mathop \sum \limits_{i} x_{{X_{i} }}^{~} L_{{X_{i} :{{N}},{\text{Va}}}}^{\text{fcc}} - \mathop \sum \limits_{i} x_{{X_{i} }}^{~} L_{{{\text{Fe}}:{{N}},{\text{Va}}}}^{\text{fcc}} ) - \mathop \sum \limits_{i} x_{{X_{i} }}^{~} (L_{{{\text{Fe}},X_{i} :{{N}}}}^{\text{fcc}} - L_{{{\text{Fe}},X_{i} :{\text{Va}}}}^{\text{fcc}} ) - \mathop \sum \limits_{i} x_{{X_{i} }}^{~} x_{{X_{i} }}^{~} L_{{\text{Fe}},X_{i} :{\text{Va}}}^{\text{fcc}} + \mathop \sum \limits_{i} x_{{X_{i} }}^{~} x_{{X_{i} }}^{~} (L_{{{\text{Fe}},X_{i} :{{N}}}}^{\text{fcc}} - L_{{{\text{Fe}},X_{i} :{\text{Va}}}}^{\text{fcc}} } \right)} \right]/RT\ln 10 + \mathop \sum \limits_{i} \log \frac{{A_{{\text{Fe}}} ^{2} }}{{\left[ {A_{{{\text{Fe}}}} \left( {1 - x_{{X_{i} }}^{~} } \right) + x_{{X_{i} }}^{~} A_{{X_{i} }} } \right]^{2} }} + \hfill \\ \left[ {\mathop \sum \limits_{i} x_{{X_{i} }}^{~} x_{{X_{i} }}^{~} L_{{{\text{Fe}},X_{i} :{\text{Va}}}}^{\text{fcc}} - \mathop \sum \limits_{i} x_{{X_{i} }}^{~} x_{{X_{i} }}^{~} (L_{{{\text{Fe}},X_{i} :{{N}}}}^{\text{fcc}} - L_{{{\text{Fe}},X_{i} :{\text{Va}}}}^{\text{fcc}} ) - \mathop \sum \limits_{i} x_{{X_{i} }}^{~} \mathop \sum \limits_{i} x_{{X_{i} }}^{~} L_{{{\text{Fe}},X_{i} :{\text{Va}}}}^{\text{fcc}} + \mathop \sum \limits_{i} x_{{X_{i} }}^{~} \mathop \sum \limits_{i} x_{{X_{i} }}^{~} \left(L_{{{\text{Fe}},X_{i} :{{N}}}}^{\text{fcc}} - L_{{{\text{Fe}},X_{i} :{\text{Va}}}}^{\text{fcc}} \right)} \right]/RT\ln 10 - \log \frac{{A_{{{\text{Fe}}}} ^{{2i - 2}} \left[ {A_{{\text{Fe}}} \left( {1 - \mathop \sum \nolimits_{i} x_{{X_{i} }}^{~} } \right) + \mathop \sum \nolimits_{i} x_{{X_{i} }}^{~} A_{{X_{i} }} } \right]^{2} }}{{\mathop \prod \nolimits_{i} \left[ {A_{{\text{Fe}}} \left( {1 - x_{{X_{i} }}^{~} } \right) + x_{{X_{i} }}^{~} A_{{X_{i} }} } \right]^{2} }} = \Delta \log {}_{~}^{\gamma } K_{{MN}}^{{X_{i} }} + \Delta \log {}_{~}^{\gamma } K_{{MN}}^{{X_{2} }} + \cdots + \left[ {\mathop \sum \limits_{i} x_{{X_{i} }}^{~} x_{{X_{i} }}^{~} L_{{Fe,X_{i} :{\text{Va}}}}^{\text{fcc}} - \mathop \sum \limits_{i} x_{{X_{i} }}^{~} x_{{X_{i} }}^{~} (L_{{Fe,X_{i} :{{N}}}}^{\text{fcc}} - L_{{Fe,X_{i} :{\text{Va}}}}^{\text{fcc}} ) - \mathop \sum \limits_{i} x_{{X_{i} }}^{~} \mathop \sum \limits_{i} x_{{X_{i} }}^{~} L_{{Fe,X_{i} :{\text{Va}}}}^{\text{fcc}} + \mathop \sum \limits_{i} x_{{X_{i} }}^{~} \mathop \sum \limits_{i} x_{{X_{i} }}^{~} (L_{{Fe,X_{i} :{{N}}}}^{\text{fcc}} - L_{{Fe,X_{i} :{\text{Va}}}}^{\text{fcc}} )} \right]/RT\ln 10 - \log \frac{{A_{{Fe}} ^{{2i - 2}} \left[ {A_{{Fe}} \left( {1 - \mathop \sum \limits_{i} x_{{X_{i} }}^{~} } \right) + \mathop \sum \limits_{i} x_{{X_{i} }}^{~} A_{{X_{i} }} } \right]^{2} }}{{\mathop \prod \limits_{i} \left[ {A_{{Fe}} \left( {1 - x_{{X_{i} }}^{~} } \right) + x_{{X_{i} }}^{~} A_{{X_{i} }} } \right]^{2} }} \cong \Delta \log {}_{~}^{\gamma } K_{{MN}}^{{X_{i} }} + \Delta \log {}_{~}^{\gamma } K_{{MN}}^{{X_{2} }} + \cdots \hfill \\ \end{aligned} $$
(A2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, XW., Li, DY., Zhang, XH. et al. Effect of Solid Solution Elements on Solubility Products of Carbides and Nitrides in Austenite: Thermodynamic Calculations. Metall Mater Trans A 50, 4445–4461 (2019). https://doi.org/10.1007/s11661-019-05295-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05295-w

Navigation