Skip to main content
Log in

In Situ Quantitative Assessment of the Role of Silicon During the Quenching and Partitioning of a 0.2C Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Silicon is an essential alloying element added in quenching and partitioning (Q&P) steels to delay and/or suppress carbide precipitation. However, there is a strong industrial interest to reduce the silicon content as it has detrimental effects on the metallurgical route. This work investigates by means of in situ high-energy XRD (HEXRD) the effect of silicon on the microstructural evolution during quenching and partitioning of a commercial 0.2C-2.3Mn grade. The results of this study highlight the role of the bainite transformation during the reheating and partitioning steps for effective austenite retention. Silicon influences the kinetics of austenite decomposition into bainite and finally promotes the stabilization of austenite. This is explained by the ability of silicon to suppress carbide precipitation (i) at the interface between bainite and austenite and (ii) in the martensite matrix. Carbide precipitation at the bainite/austenite interface decreases the amount of carbon that diffuses from bainite to austenite, subsequently accelerating the bainite transformation kinetics and preventing austenite stabilization. Carbide precipitation in martensite reduces the amount of carbon available for partitioning in austenite, further preventing its stabilization. Additions of elements such as Cr or Mo could be therefore considered in order to reduce the austenite decomposition in low-silicon steel grades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 1. J. Speer, D. K. Matlock, B. C. De Cooman, and J. G. Schroth, Acta Mater., 2003, vol. 51, pp 2611-2622

    Article  Google Scholar 

  2. 2. J. G. Speer, D. V. Edmonds, F. C. Rizzo, and D. K. Matlock, Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 219-237.

    Article  Google Scholar 

  3. 3. M. J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W. G. Sloof, and J. Sietsma, Acta Mater., 2011, vol. 59, pp. 6059-6068.

    Article  Google Scholar 

  4. 4. D. De Knijf, C. Föjer, L.A.I. Kestens, and R. Petrov, Mater. Sci. Eng. A, 2015, vol. 638, pp. 219–227.

    Article  Google Scholar 

  5. 5. N.H. Van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. Van Der Zwaag, Acta Mater., 2005, vol. 53, pp. 5439–5447.

    Article  Google Scholar 

  6. 6. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang, Scr. Mater., 2013, vol. 68, pp. 321–324.

    Article  Google Scholar 

  7. P.J. Jacques, F. Delannay, and J. Ladrière: Metall. Mater. Trans. A Phys., 2001, vol. 32, pp. 2759–68.

    Article  Google Scholar 

  8. 8. H.S. Zhao, W. Li, X. Zhu, X.H. Lu, L. Wang, S. Zhou, and X.J. Jin, Mater. Sci. Eng. A, 2016, vol. 649, pp. 18–26.

    Article  Google Scholar 

  9. 9. L. Samek, E. De Moor, J. Penning, and B.C. De Cooman, Metall. Mater. Trans. A, 2006, vol. 37, pp. 109–124.

    Article  Google Scholar 

  10. J. G. Speer, A. M. Streicher, D. K. Matlock, F. Rizzo, and G. Krauss (2003). Austenite formation and decomposition. Chicago, TMS Warrendale, pp 505-522

    Google Scholar 

  11. 11. E. Girault, A. Mertens, P. Jacques, Y. Houbaert, B. Verlinden, and J. Van Humbeeck, Scr. Mater., 2001, vol. 44, pp. 885–892.

    Article  Google Scholar 

  12. 12. H.K.D.H. Bhadeshia and D. V. Edmonds, Metall. Trans. A, 1979, vol. 10, pp. 895–907.

    Article  Google Scholar 

  13. 13. M. Takahashi and H.K.D.H. Bhadeshia, Mater. Trans. JIM, 1991, vol. 32, pp. 689–696.

    Article  Google Scholar 

  14. 14. E. Kozeschnik and H.K.D.H. Bhadeshia, Mater. Sci. Technol., 2008, vol. 24, pp. 343–347.

    Article  Google Scholar 

  15. 15. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D. V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E. De Moor, Acta Mater., 2008, vol. 56, pp. 16–22.

    Article  Google Scholar 

  16. 16. J. Tobata, K.-L. Ngo-Huynh, N. Nakada, T. Tsuchiyama, and S. Takaki, ISIJ Int., 2012, vol. 52, pp. 1377–1382.

    Article  Google Scholar 

  17. P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. Van Humbeeck, and F. Delannay, ISIJ Int., 2001, vol. 41, pp. 1068–74.

    Article  Google Scholar 

  18. 18. Y. Toji, G. Miyamoto, and D. Raabe, Acta Mater., 2015, vol. 86, pp. 137–147.

    Article  Google Scholar 

  19. 19. D.T. Pierce, D. R. Coughlin, D. L. Williamson, K. D. Clarke, A. J. Clarke, J. G. Speer, and E. De Moor, Acta Mater., 2014, vol. 90, pp. 417-430.

    Article  Google Scholar 

  20. 20. F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, and M.J. Santofimia, Acta Mater., 2016, vol. 104, pp. 72–83.

    Article  Google Scholar 

  21. 21. P. Huyghe, L. Malet, M. Caruso, C. Georges, and S. Godet, Mater. Sci. Eng. A, 2017, vol. 701, pp. 254–263.

    Article  Google Scholar 

  22. 22. P. Huyghe, M. Caruso, J. L. Collet, S. Dépinoy, and S. Godet, Mater. Sci. Eng. A, 2019, vol. 743, pp. 175–184

    Article  Google Scholar 

  23. S. Allain, G. Geandier, J.-C. Hell, M. Soler, F. Danoix, and M. Gouné, Metals, 2017, vol. 7, 232

    Article  Google Scholar 

  24. 24. M.J. Santofimia, T. Nguyen-Minh, L. Zhao, R. Petrov, I. Sabirov, and J. Sietsma, Mater. Sci. Eng. A, 2010, vol. 527, pp. 6429–6439.

    Article  Google Scholar 

  25. G.K. Bansal, V. Rajinikanth, C. Ghosh, V.C. Srivastava, S. Kundu, and S. Ghosh Chowdhury: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3501–14.

    Article  Google Scholar 

  26. 26. G.K. Bansal, M. Pradeep, C. Ghosh, V. Rajinikanth, V.C. Srivastava, A.N. Bhagat, and S. Kundu, Metall. Mater. Trans. A, 2019, vol. 50, pp. 547–555.

    Article  Google Scholar 

  27. 27. B. Kim, J. Sietsma, and M.J. Santofimia, Mater. Des., 2017, vol. 127, pp. 336–345.

    Article  Google Scholar 

  28. 28. P. Jacques, E. Girault, T. Catlin, N. Geerlofs, T. Kop, S. van der Zwaag, and F. Delannay, Mater. Sci. Eng. A, 1999, vol. 273–275, pp. 475–479.

    Article  Google Scholar 

  29. T. Sourmail and M. Millot-Méheux, Mater. Sci. Technol. U.K., 2016, vol. 32, pp. 1126–32.

    Article  Google Scholar 

  30. 30. D.H. Kim, J.G. Speer, H.S. Kim, and B.C. De Cooman, Metall. Mater. Trans. A, 2009, vol. 40, pp. 2048–2060.

    Article  Google Scholar 

  31. 31. W.T. Zhao, X.F. Huang, and W.G. Huang, Mater. Sci. Technol., 2016, vol. 32, pp. 1374–81.

    Article  Google Scholar 

  32. 32. D.K. Matlock, V.E. Bräutigam, and J.G. Speer, Mater. Sci. Forum, 2003, vol. 426–432, pp. 1089–94.

    Article  Google Scholar 

  33. 33. S.M.C. van Bohemen, Mater. Sci. Technol., 2012, vol. 28, pp. 487–95.

    Article  Google Scholar 

  34. 34. K.W. Andrews, J. Iron Steel Inst., 1965, vol. 203, pp. 721–9.

    Google Scholar 

  35. ESRF Fit2D, http://www.esrf.eu/computing/scientific/FIT2D/. Accessed 20 November 2018

  36. S.Y.P. Allain, G. Geandier, J.C. Hell, M. Soler, F. Danoix, and M. Gouné: Scr. Mater., 2017, vol. 131, pp. 15–18.

  37. 37. J. Epp, T. Hirsch, and C. Curfs, Metall. Mater. Trans. A, 2012, vol. 43, pp. 2210–2217.

    Article  Google Scholar 

  38. 38. J. Epp, H. Surm, O. Kessler, and T. Hirsch, Acta Mater., 2007, vol. 55, pp. 5959–5967.

    Article  Google Scholar 

  39. 39. X.G. Lu, M. Selleby, and B. Sundman, Acta Mater., 2005, vol. 53, pp. 2259–2272.

    Article  Google Scholar 

  40. 40. Y. Toji, H. Matsuda, M. Herbig, P.-P. Choi, and D. Raabe, Acta Mater., 2014, vol. 65, pp. 215–228.

    Article  Google Scholar 

  41. J. Drumond, O. Girina, J.F. de Filho, N. Fonstein, and C.A.S. de Oliveira, Metallogr. Microstruct. Anal., 2012, vol. 1, pp. 217–23.

    Article  Google Scholar 

  42. 42. D. Quidort and Y.J.M. Brechet, Acta Mater., 2001, vol. 49, pp. 4161–4170.

    Article  Google Scholar 

  43. 43. D. Quidort and Y. Bréchet, Scr. Mater., 2002, vol. 47, pp. 151–156.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the European Synchrotron Radiation Facility for the provision of synchrotron radiation facilities and would also like to thank P. Sedmak and T. Buslaps for assistance in using beamline ID11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Godet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 21, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huyghe, P., Caruso, M., Collet, JL. et al. In Situ Quantitative Assessment of the Role of Silicon During the Quenching and Partitioning of a 0.2C Steel. Metall Mater Trans A 50, 3486–3494 (2019). https://doi.org/10.1007/s11661-019-05281-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05281-2

Navigation