Skip to main content
Log in

Microstructural Characterization and Mechanical Properties of 120-mm Ultra-thick SiCp/Al Composite Plates Joined by Double-Sided Friction Stir Welding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Applications of aluminum matrix composite (AMC) engineering components are being quickly developed and their numbers are increasing, but difficulties still exist in the direct fabrication of large AMC components. Joining thick composite plates without drawbacks has become an effective and alternative route, and friction stir welding (FSW) is the most promising and efficient technique, which should be selected first. In this work, 120-mm ultra-thick plates of 16 vol pct SiCp/2014Al composites were successfully joined by double-sided FSW. Microstructural characterization and mechanical properties of the composite joint along the transverse and thickness directions are investigated, respectively. Along the transverse direction changing from the base material (BM) to the heat-affected zone (HAZ) to the nugget zone (NZ), SiC particles are broken, blunted and uniformly distributed, and the aluminum grains are refined. The coarse precipitates are dissolved and then re-precipitated. Vickers microhardness of the composite joint gradually increases, and the peak values appear in the NZ. For the composite joint, the tensile strength is close to that of the BM showing a joint efficiency of 97 pct. Along the thickness direction varying from the top surface to middle section of the composite joint, the SiC particle size has no significant differences in the NZ, the aluminum grain size gradually decreases, and the precipitate size has some differences. Vickers microhardness of the composite joint decreases with increasing thickness in the NZ and HAZ, and no clear differences exist in the BM; tensile properties of the composite joint present few differences with varying thickness, and tensile failures usually occur in the BM. A good understanding and guide can be provided for joining ultra-thick plates of metal matrix composites by FSW in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 1. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia: J. Mater. Sci., 1991, vol. 26, pp. 1137-56.

    Article  Google Scholar 

  2. 2. O.S. Salih, H. Ou, W. Sun, and D.G. McCartney: Mater. Des., 2015, vol. 86, pp. 61-71.

    Article  Google Scholar 

  3. 3. M.-N. Avettand-Fènoël and A. Simar: Mater. Charact., 2016, vol. 120, pp. 1-17.

    Article  Google Scholar 

  4. 4. T. Prater: Acta Astronaut., 2014, vol. 93, pp. 366-73.

    Article  Google Scholar 

  5. 5. D.B. Miracle: Compos. Sci. Technol., 2005, vol. 65, pp. 2526-40.

    Article  Google Scholar 

  6. 6. M.K. Surappa: Sādhanā, 2003, vol. 28, pp. 319-34.

    Google Scholar 

  7. 7. A. Ureña, M.D. Escalera, and L. Gil: Compos. Sci. Technol., 2000, vol. 60, pp. 613-22.

    Article  Google Scholar 

  8. 8. D. Storjohann, O.M. Barabash, S.A. David, P.S. Sklad, E.E. Bloom, and S.S. Babu: Metall. Mater. Trans. A, 2005, vol. 36, pp. 3237-47.

    Article  Google Scholar 

  9. 9. X.H. Wang, J.T. Niu, S.K. Guan, L.J. Wang, and D.F. Cheng: Mater. Sci. Eng. A, 2009, vol. 499, pp. 106-10.

    Article  Google Scholar 

  10. 10. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50, pp. 1-78.

    Article  Google Scholar 

  11. 11. Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39, pp. 642-58.

    Article  Google Scholar 

  12. Khodabakhshi F, Ghasemi Yazdabadi H, Kokabi AH, Simchi A (2013) Mater Sci Eng A 585:222-232

    Article  Google Scholar 

  13. 13. Y.N. Zhang, X. Cao, S. Larose, and P. Wanjara: Can. Metall. Q., 2013, vol. 51, pp. 250-61.

    Article  Google Scholar 

  14. 14. D.R. Ni, D.L. Chen, B.L. Xiao, D. Wang, and Z.Y. Ma: Int. J. Fatigue, 2013, vol. 55, pp. 64-73.

    Article  Google Scholar 

  15. 15. I. Dinaharan and N. Murugan: Mater. Sci. Eng. A, 2012, vol. 543, pp. 257-66.

    Article  Google Scholar 

  16. 16. L. Ceschini, I. Boromei, G. Minak, A. Morri, and F. Tarterini: Compos. Sci. Technol., 2007, vol. 67, pp. 605-15.

    Article  Google Scholar 

  17. 17. X.G. Chen, M. da Silva, P. Gougeon, and L. St-Georges: Mater. Sci. Eng. A, 2009, vol. 518, pp. 174-84.

    Article  Google Scholar 

  18. 18. J. Guo, P. Gougeon, F. Nadeau, and X.G. Chen: Can. Metall. Q., 2013, vol. 51, pp. 277-83.

    Article  Google Scholar 

  19. 19. S. Das, N.Y. Martinez, S. Das, R.S. Mishra, G.J. Grant, S. Jana, and E. Polikarpov: JOM, 2016, vol. 68, pp. 1925-31.

    Article  Google Scholar 

  20. 20. W. Wang, Q.Y. Shi, P. Liu, H.K. Li, and T. Li: J. Mater. Process. Technol., 2009, vol. 209, pp. 2099-103.

    Article  Google Scholar 

  21. 21. P. Periyasamy, B. Mohan, and V. Balasubramanian: J. Mater. Eng. Perform., 2012, vol. 21, pp. 2417-28.

    Article  Google Scholar 

  22. 22. D. Wang, Q.Z. Wang, B.L. Xiao, and Z.Y. Ma: Mater. Sci. Eng. A, 2014, vol. 589, pp. 271-74.

    Article  Google Scholar 

  23. 23. T.J. Prater, A.M. Strauss, G.E. Cook, B.T. Gibson, and C.D. Cox: J. Mater. Eng. Perform., 2013, vol. 22, pp. 1807-13.

    Article  Google Scholar 

  24. 24. T.J. Prater, A.M. Strauss, G.E. Cook, B.T. Gibson, and C.D. Cox: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3757-64.

    Article  Google Scholar 

  25. 25. A.H. Feng, B.L. Xiao, and Z.Y. Ma: Compos. Sci. Technol., 2008, vol. 68, pp. 2141-48.

    Article  Google Scholar 

  26. 26. J.M. Root, D.P. Field, and T.W. Nelson: Metall. Mater. Trans. A, 2009, vol. 40, pp. 2109-14.

    Article  Google Scholar 

  27. 27. D. Wang, B.L. Xiao, Q.Z. Wang, and Z.Y. Ma: J. Mater. Sci. Technol., 2014, vol. 30, pp. 54-60.

    Article  Google Scholar 

  28. 28. H.J. Liu, Y.Y. Hu, and Y.Q. Zhao: Mater. Lett., 2015, vol. 158, pp. 136-39.

    Article  Google Scholar 

  29. 29. F. Cioffi, R. Fernández, D. Gesto, P. Rey, D. Verdera, and G. González-Doncel: Compos. Part A, 2013, vol. 54, pp. 117-23.

    Article  Google Scholar 

  30. 30. M. Imam, Y.F. Sun, H. Fujii, N.S. Ma, S. Tsutsumi, and H. Murakawa: Metall. Mater. Trans. A, 2016, vol. 48, pp. 208-29.

    Google Scholar 

  31. 31. F.J. Humphreys, W.S. Miller, and M.R. Djazeb: Mater. Sci. Technol., 1990, vol. 6, pp. 1157-66.

    Article  Google Scholar 

  32. 32. W.F. Xu, J.H. Liu, H.Q. Zhu, and L. Fu: Mater. Des., 2013, vol. 47, pp. 599-606.

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial support of the National Key Research and Development Program of China (No. 2018YFB0704400) and the National Nature Science Foundation of China (Nos. 51471106, 51671129, 51501111).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yishi Su or Qiubao Ouyang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 15, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Q., Su, Y., Ouyang, Q. et al. Microstructural Characterization and Mechanical Properties of 120-mm Ultra-thick SiCp/Al Composite Plates Joined by Double-Sided Friction Stir Welding. Metall Mater Trans A 50, 3589–3602 (2019). https://doi.org/10.1007/s11661-019-05270-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05270-5

Navigation