Skip to main content
Log in

Effects of Multipass Additive Friction Stir Processing on Microstructure and Mechanical Properties of Al-Zn-Cup/Al-Zn Laminated Composites

  • Additive Manufacturing: Functionally Graded Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A laminated composite of Al-Zn alloy reinforced with copper powder has been fabricated using friction stir additive manufacturing (FSAM). For this purpose, friction stir processing (FSP) was performed in one to four passes on Alclad Al-Zn aluminum alloy sheet. The results showed that, depending on the rotational and traverse speeds, a protective high-purity aluminum layer on the surface of Alclad Al-Zn emerged from the interface and formed an integrated protective layer in the areas around and away from the stir zone. An Al-Cu intermetallic (Al2Cu) layer formed at the interface of the large reinforcement particles. However, in smaller particles, the copper particle reacted completely with Al. Composite fabrication using a rotational speed of 800 rpm, traverse speed of 40 mm/min, and two passes resulted in a 26.3% increase in the maximum ultimate tensile strength (UTS) to 422.69 ± 4.31 MPa and a 2.6% increase in elongation in 25.31 ± 2.11% compared with a powderless double-layer sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.K. Patel, V.P. Singh, B.S. Roy, and B. Kuriachen, J. Mater. Sci. Eng. B 262, 114708. (2020).

    Article  Google Scholar 

  2. H. Izadi, and A.P. Gerlich, Carbon 50, 4744. (2012).

    Article  Google Scholar 

  3. S. Mitrović, M. Babić, B. Stojanović, N. Miloradović, M. Pantić, and D. Džunić, Tribol. Indus. 34, 177. (2012).

    Google Scholar 

  4. D. Yadav, and R. Bauri, Mater. Sci. Technol. 31, 494. (2015).

    Article  Google Scholar 

  5. J. Lee, D. Bae, W. Chung, K. Kim, J. Lee, and Y. Cho, J. Mater. Process. Technol. 187, 546. (2007).

    Article  Google Scholar 

  6. F. García-Vázquez, B. Vargas-Arista, R. Muñiz, J.C. Ortiz, H.H. García, and J. Acevedo, Soldagem Inspecao 21, 508. (2016).

    Article  Google Scholar 

  7. M. Azizieh, D. Iranparast, M. Dezfuli, Z. Balak, and H. Kim, Trans. Nonferrous Met. Soc. China 27, 779. (2017).

    Article  Google Scholar 

  8. G. Huang, W. Hou, J. Li, and Y. Shen, Surf. Coat. Technol. 344, 30. (2018).

    Article  Google Scholar 

  9. A. Dolatkhah, P. Golbabaei, M.B. Givi, and F. Molaiekiya, Mater. Des. 37, 458. (2012).

    Article  Google Scholar 

  10. A. Shafiei-Zarghani, S. Kashani-Bozorg, and A. Zarei-Hanzaki, J. Mater. Sci. Eng. A 500, 84. (2009).

    Article  Google Scholar 

  11. S. Palanivel, P. Nelaturu, B. Glass, and R. Mishra, Mater. Des. 65, 934. (2015).

    Article  Google Scholar 

  12. S. Palanivel, H. Sidhar, and R. Mishra, JOM 67, 616. (2015).

    Article  Google Scholar 

  13. A.B. Ibrahim, F.A. Al-Badour, A.Y. Adesina, and N. Merah, J. Manuf. Process. 34, 451. (2018).

    Article  Google Scholar 

  14. R. Beygi, M. Kazeminezhad, and A. Kokabi, Metall. Mater. Trans. A 45, 361. (2014).

    Article  Google Scholar 

  15. M.R. Roodgari, R. Jamaati, and H.J. Aval, J. Mater. Sci. Eng. A 772, 138775. (2020).

    Article  Google Scholar 

  16. M.R. Roodgari, R. Jamaati, and H.J. Aval, J. Manuf. Process. 51, 110. (2020).

    Article  Google Scholar 

  17. J. Gandra, R. Miranda, P. Vilaça, A. Velhinho, and J.P. Teixeira, J. Mater. Process. Technol 211, 1659. (2011).

    Article  Google Scholar 

  18. F. Khodabakhshi, and A. Gerlich, J. Manuf. Process. 36, 77. (2018).

    Article  Google Scholar 

  19. V. Bikkina, S.R. Talasila, and K. Adepu, Trans. Nonferrous Met. Soc. China 30, 1743. (2020).

    Article  Google Scholar 

  20. Z. Ahmad, Recent Trends in Processing and Degradation of Aluminium Alloys (InTech, 2011), pp 223–262.

    Book  Google Scholar 

  21. V. Balasubramanian, J. Mater. Sci. Eng. A 480, 397. (2008).

    Article  Google Scholar 

  22. P. Kah, R. Rajan, J. Martikainen, and R. Suoranta, Int. J. Mech. Mater. Eng. 10, 1. (2015).

    Article  Google Scholar 

  23. K. Elangovan, and V. Balasubramanian, Mater. Des. 29, 362. (2008).

    Article  Google Scholar 

  24. F.J. Humphreys, and M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, 2012), pp 215–318.

    Google Scholar 

  25. F. Akhlaghi, A. Lajevardi, and H. Maghanaki, J. Mater. Process. Technol. 155, 1874. (2004).

    Article  Google Scholar 

  26. N. Kulkarni, R.S. Mishra, and W. Yuan, Friction Stir Welding of Dissimilar Alloys and Materials (Butterworth-Heinemann, 2015), pp 15–34.

    Google Scholar 

  27. P.V. Kumar, G.M. Reddy, and K.S. Rao, Def. Technol. 11, 362. (2015).

    Article  Google Scholar 

  28. C. Zhang, G. Huang, D. Zhang, Z. Sun, and Q. Liu, J. Mater. Res. Technol. 9, 14771. (2020).

    Article  Google Scholar 

  29. D. Ambrosio, C. Garnier, V. Wagner, E. Aldanondo, G. Dessein, and O. Cahuc, Int. J. Adv. Manuf. Technol. 111, 1333. (2020).

    Article  Google Scholar 

  30. M. Jalalvand, G. Czél, and M.R. Wisnom, Compos. Part A 69, 83. (2015).

    Article  Google Scholar 

  31. H.J. Aval, Mater. Des. 67, 413. (2015).

    Article  Google Scholar 

  32. L. Zhou, R. Zhang, G. Li, W. Zhou, Y. Huang, and X. Song, J. Manuf. Process. 36, 1. (2018).

    Article  Google Scholar 

  33. R. Beygi, M.Z. Mehrizi, D. Verdera, and A. Loureiro, J. Mater. Process. Technol. 255, 739. (2018).

    Article  Google Scholar 

  34. H. Deore, A. Bhardwaj, A. Rao, J. Mishra, and V. Hiwarkar, Def. Technol. 16, 1039. (2020).

    Article  Google Scholar 

  35. S. Ahmadifard, A. Momeni, S. Bahmanzadeh, and S. Kazemi, Vacuum 155, 134. (2018).

    Article  Google Scholar 

  36. G. Buffa, D. Campanella, and L. Fratini, J. Manuf. Process. 28, 422. (2017).

    Article  Google Scholar 

  37. A. Kumar, K. Pal, and S. Mula, J. Manuf. Process. 30, 1. (2017).

    Article  Google Scholar 

  38. H.M. Rajan, I. Dinaharan, S. Ramabalan, and E. Akinlabi, J. Alloys Compd. 657, 250. (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Jamshidi Aval.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardalanniya, A., Nourouzi, S. & Jamshidi Aval, H. Effects of Multipass Additive Friction Stir Processing on Microstructure and Mechanical Properties of Al-Zn-Cup/Al-Zn Laminated Composites. JOM 73, 2844–2858 (2021). https://doi.org/10.1007/s11837-021-04760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04760-5

Navigation