Skip to main content
Log in

Magnetic Properties of Friction Stir Processed Composite

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Of the many existing inspection or monitoring systems, each has its own advantages and drawbacks. These systems are usually comprised of semi-remote sensors that frequently cause difficulty in reaching complex areas of a component. This study proposes to overcome that difficulty by developing embedded functional composites, so that embedding can be achieved in virtually any component part and periodically can be interrogated by a reading device. The “reinforcement rich” processed areas can then be used to record properties such as strain, temperature, and stress state, to name a few, depending on the reinforcement material. Friction stir processing was used to fabricate a magnetostrictive composite by embedding galfenol particles into a nonmagnetic aluminum matrix. The aim was to develop a composite that produces strain in response to a varying magnetic field. Reinforcements were distributed uniformly in the matrix. Magnetization curves were studied using a vibrating sample magnetometer. A simple and cost-effective setup was developed to measure the magnetostrictive strain of the composites. Important factors affecting the magnetic properties were identified and the processing route was modified to improve the magnetic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, Scr. Mater. 42, 163 (1999).

    Article  Google Scholar 

  2. R.S. Mishra and Z.Y. Ma, Mater. Sci. Eng. R 50, 1 (2005).

    Article  Google Scholar 

  3. R.S. Mishra, Z.Y. Ma, and I. Charit, Mater. Sci. Eng. A 341, 307 (2003).

    Article  Google Scholar 

  4. A. Shafiei-Zarghani, S.F. Kashani-Bozorg, and A. Zarei-Hanzaki, Mater. Sci. Eng. A 500, 84 (2009).

    Article  Google Scholar 

  5. C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang, Acta Mater. 54, 5241 (2006).

    Article  Google Scholar 

  6. C.J. Hsu, P.W. Kao, and N.J. Ho, Mater. Lett. 61, 1315 (2007).

    Article  Google Scholar 

  7. W. Wang, Q. Shi, P. Liu, H. Li, and T. Li, J. Mater. Process. Technol. 209, 2099 (2009).

    Article  Google Scholar 

  8. P. Asadi, G. Faraji, and M. Besharati, Int. J. Adv. Manuf. Technol. 51, 247 (2010).

    Article  Google Scholar 

  9. M. Dixit, J.W. Newkirk, and R.S. Mishra, Scr. Mater. 56, 541 (2007).

    Article  Google Scholar 

  10. D.K. Lim, T. Shibayanagi, and A.P. Gerlich, Mater. Sci. Eng. A 507, 194 (2009).

    Article  Google Scholar 

  11. T.R. Gururaja, W.A. Schulze, L.E. Cross, R.E. Newnham, B.A. Auld, and Y.J. Wang, IEEE Trans. Sonics Ultrason. 32, 481 (1985).

    Article  Google Scholar 

  12. J. Li, K. Takagi, N. Terakubo, and R. Watanabe, Appl. Phys. Lett. 79, 2441 (2001).

    Article  Google Scholar 

  13. K. Takagi, J. Li, S. Yokoyama, and R. Watanabe, J. Eur. Ceram. Soc. 23, 1577 (2003).

    Article  Google Scholar 

  14. F.E. Pinkerton and T.W. Capehart, Appl. Phys. Lett. 70, 2601 (1997).

    Article  Google Scholar 

  15. T.A. Duenas and G.P. Carman, J. Appl. Phys. 87, 4696 (2000).

    Article  Google Scholar 

  16. S. Guruswamy, N. Srisukhumbowornchai, A.E. Clark, J.B. Restorff, and M. Wun-Fogle, Scr. Mater. 43, 239 (2000).

    Article  Google Scholar 

  17. N. Balasubramanian, B. Gattu, and R.S. Mishra, Sci. Technol. Weld. Join. 14, 141 (2009).

    Article  Google Scholar 

  18. S. Mandal, J. Rice, and A.A. Elmustafa, J. Mater. Process. Technol. 203, 411 (2008).

    Article  Google Scholar 

  19. Z.Y. Ma, S.R. Sharma, and R.S. Mishra, Mater. Sci. Eng. A 433, 269 (2006).

    Article  Google Scholar 

  20. Y.N. Wang, C.I. Chang, C.J. Lee, H.K. Lin, and J.C. Huang, Scr. Mater. 55, 637 (2006).

    Article  Google Scholar 

  21. S. Bednarek, Appl. Phys. A 68, 63 (1999).

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Pacific Northwest National Laboratory (PNNL) for the financial support for this work.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv S. Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Martinez, N.Y., Das, S. et al. Magnetic Properties of Friction Stir Processed Composite. JOM 68, 1925–1931 (2016). https://doi.org/10.1007/s11837-016-1881-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1881-6

Keywords

Navigation