Skip to main content
Log in

Growth Kinetics of Ni3Sn4 in the Solid–Liquid Interfacial Reaction

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A kinetic model of Ni3Sn4 growth in a solid (Ni)–liquid (Sn solution saturated with Ni) interfacial reaction was established, and a kinetic equation of \( l^{\text{IMC}} = 0.58\sqrt {\tilde{D}t} \) was derived, which coincided with the experimental parabolic growth behavior. The Ni-Sn interdiffusion coefficient in Ni3Sn4 (\( \tilde{D} \)) was obtained as \( \tilde{D} = 7.61 \times 10^{ - 12} \exp \left( { - \frac{{24.76\; {\text{kJ}}/{\text{mol}}}}{RT}} \right) \) by combining the kinetic equation with kinetic experiments conducted at different temperatures. The developed model can predict the thickness of the Ni3Sn4 layer well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

IMC:

Intermetallic compound

UBM:

Under bump metallization

X Ni/IMCSn :

Mole fraction of Sn atoms at Ni side of Ni3Sn4/Ni interface, dimensionless

X IMC/NiSn :

Mole fraction of Sn atoms at Ni3Sn4 side of Ni3Sn4/Ni interface, dimensionless

X IMC/SnSn :

Mole fraction of Sn atoms at Ni3Sn4 side of Ni3Sn4/Sn interface, dimensionless

X Sn/IMCSn :

Mole fraction of Sn atoms at Sn side of Ni3Sn4/Sn interface, dimensionless

X Ni/IMCNi :

Mole fraction of Ni atoms at Ni side of Ni3Sn4/Ni interface, dimensionless

X IMC/NiNi :

Mole fraction of Ni atoms at Ni3Sn4 side of Ni3Sn4/Ni interface, dimensionless

X IMC/SnNi :

Mole fraction of Ni atoms at Ni3Sn4 side of Ni3Sn4/Sn interface, dimensionless

X Sn/IMCNi :

Mole fraction of Ni atoms at Sn side of Ni3Sn4/Sn interface, dimensionless

ΔX IMCSn :

Mole fraction difference of Sn atoms at the two sides of Ni3Sn4

X IMCNi :

Mole fraction of Ni atoms in Ni3Sn4, dimensionless

X IMCSn :

Mole fraction of Sn atoms in Ni3Sn4, dimensionless

\( \tilde{D} \) :

Ni-Sn interdiffusion coefficient in Ni3Sn4, m2/s

D IMCNi :

Intrinsic diffusion coefficient of Ni atoms in Ni3Sn4, m2/s

D IMCSn :

Intrinsic diffusion coefficient of Sn atoms in Ni3Sn4, m2/s

V IMCm :

Molar volume of Ni3Sn4, m3/mol

V Nim :

Molar volume of Ni, m3/mol

t :

Reaction time, s

A :

Area of Ni3Sn4

x 1 :

Position coordinate of Ni3Sn4/Ni interface at time t, m

x 2 :

Position coordinate of Ni3Sn4/Sn interface at time t, m

\( l_{1} \) :

Growth thickness of Ni3Sn4 layer at Ni3Sn4/Ni interface side at time t, contrary to x1 in numerical, m

\( l_{2} \) :

Growth thickness of Ni3Sn4 layer at Ni3Sn4/Sn interface side at time t, equal to x2 in numerical, m

k 1, k 2, H :

Constant

References

  1. [1] D. R. Frear, P. T. Vianco: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1509-1523.

    Article  Google Scholar 

  2. [2] S. Bader, W. Gust, H. Hieber: Acta Metall. Et Mater., 1995, vol. 43, pp. 329-337.

    Google Scholar 

  3. [3] G. Ghosh: Acta Mater., 2000, vol. 48, pp. 3719-3738.

    Article  Google Scholar 

  4. [4] C. S. Huang, J. G. Duh, Y. M. Chen, J.H. Wang: J. Electron. Mater., 2003, vol. 32, pp. 89-94.

    Article  Google Scholar 

  5. [5] G. Y. Jang, C. S. Huang, L. Y. Hsiao, J. G. Duh, H. Takahashi: J. Electron. Mater., 2004, vol. 33, pp. 1118-1129.

    Article  Google Scholar 

  6. [6] M. He, Z. Chen, G. Qi: Metall. Mater. Trans. A, 2005, vol. 36, pp. 65-75.

    Article  Google Scholar 

  7. [7] J. W. Yoon, H. S. Chun, J. M. Koo, H. J. Lee, S. B. Jung: Scripta Mater., 2007, vol. 56, pp. 661-664.

    Article  Google Scholar 

  8. [8] J. Görlich, D. Baither, G. Schmitz: Acta Mater., 2010, vol. 58, pp. 3187-3197.

    Article  Google Scholar 

  9. [9] K. Chu; Y. Sohn; C. Moon: Scripta Mater. 2015, vol. 109, pp. 113-117.

    Article  Google Scholar 

  10. [10] Y. Li, K. Luo, A. B. Y. Lim, Z. Chen, F. S. Wu, Y. C. Chan: Mat. Sci. Eng. A-Struct., 2016, vol. 669, pp. 291-303.

    Article  Google Scholar 

  11. [11] P. Y. Chia, A. Haseeb, S.H. Mannan: Materials, 2016, vol. 9, pp. 430.

    Google Scholar 

  12. [12] V. A. Baheti, S. Kashyap, P. Kumar, K. Chattopadhyay, A. Paul: J. Alloy. Compd., 2017, vol. 727, pp. 832-840.

    Article  Google Scholar 

  13. [13] H. J. Dong, Z. L. Li, X. G. Song, H. Y. Zhao, J. C. Yan, H. Tian, J. H. Liu: J. Alloy. Compd., 2017, vol. 723, pp. 1026-1031.

    Article  Google Scholar 

  14. ZL Li, HJ Dong, XG Song, HY Zhao, JC Feng, JH Liu, H Tian, SJ Wang: Ultrason. Sonochem., 2017, vol. 36, pp. 420-426.

    Article  Google Scholar 

  15. H.L. Feng, J.H. Huang, J. Zhang, X.D. Zhai, X.K. Zhao, S.H. Chen: IEEE, Electron. Packaging and Techno. Conf., 2015, pp. 1–4.

  16. [16] H. J. Ji, M. G. Li, S. Ma, M. Y. Li: Mater. Design, 2016, vol. 108, pp.590-596.

    Article  Google Scholar 

  17. [17] H. L. Feng, J.H. Huang, J. Yang, S. K. Zhou, R. Zhang, Y. Wang, S. H. Chen: Electron. Mater. Lett., 2017, vol. 13, pp. 489-496.

    Article  Google Scholar 

  18. [18] H. L. Feng, J. H. Huang, X. W. Peng, Z. W. Lv, Y. Wang, J. Yang, S. H. Chen: Thermochim. Acta, 2018, vol. 663, pp.53-57.

    Article  Google Scholar 

  19. [19] H. L. Feng, J. H. Huang, X. W. Peng, Z. W. Lv, Y. Wang, J. Yang, S. H. Chen, X. K. Zhao: J Electron. Mater., 2018, Vol.47, pp. 1-11.

    Article  Google Scholar 

  20. A. Watson, B. Odera, D. Pavlyuchkov, and M. Hampl, MSIT: MSI Eureka in Springer Mater., 2015.

  21. [21] S. K. Kang, V. Ramachandran: Scripta Metall., 1980, vol.14, pp. 421-424.

    Article  Google Scholar 

  22. [22] S. W. Yoon, M. D. Glover, K. Shiozaki: IEEE T Power Electr., 2013, vol. 28, pp. 2448-2456.

    Article  Google Scholar 

  23. [23] C. C. Yu, P.C. Su, S.J. Bai, T. H. Chuang: Manuf. Eng., 2014, vol. 15, pp.143-147.

    Google Scholar 

  24. [24] A. Lis, C. Kenel, C. Leinenbach: Metall. Mater. Trans. A, 2016, vol.47, pp. 2596-2608.

    Article  Google Scholar 

  25. [25] J. Shen, Y.C. Chan, S.Y. Liu: Acta Mater., 2009, vol. 57, pp. 5196-5206.

    Article  Google Scholar 

  26. [26] A. Nakane, T. Suzuki, M. Kajihara: Mater. Trans., 2016, vol. 57. pp. 838-845.

    Article  Google Scholar 

  27. [27] R. Labie, W. Ruythooren, J.V. Humbeeck: Intermetallics, 2007, vol. 15, pp. 396-403.

    Article  Google Scholar 

  28. [28] D. Gur, M. Bamberger. Acta Mater., 1998, vol. 46, pp. 4917-4923.

    Article  Google Scholar 

  29. [29] Y. S. Yang, C.J. Yang, F.Y. Ouyang: J Alloy Compd., 2016, vol. 674, pp. 331-340.

    Article  Google Scholar 

  30. D. Olsen, R. Wright, and H. Berg: Reliab. Phys. Symp., IEEE, 1975, pp. 80-86.

  31. [31] C. H. Wang, J. L. Liu, Intermetallics, 2015, vol. 61, pp. 9-15.

    Article  Google Scholar 

Download references

This work is supported by the National Nature Science Foundation of China under Grant No. 51474026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 16, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, J., Ye, Z. et al. Growth Kinetics of Ni3Sn4 in the Solid–Liquid Interfacial Reaction. Metall Mater Trans A 50, 3038–3043 (2019). https://doi.org/10.1007/s11661-019-05259-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05259-0

Navigation