Skip to main content

Advertisement

Log in

Effects of Si Content and Forging Pressure on the Microstructural and Mechanical Characteristics in Semi-solid Forging of Al-Si-Mg Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, semi-solid forging (SSF) using electromagnetic stirring of Al-Si-Mg alloys was carried out. To evaluate the acceptability for producing a semi-solid slurry of an alloy with various Si contents, the temperature sensitivity of the solid fraction and solidification range were calculated by Thermo-Calc. The effects of the Si content and forging pressure on the microstructural and mechanical properties, such as tensile strength and elongation, were ascertained. Specimens were taken from two typical positions on the semi-solid-forged products, where one position corresponds to a region of directly applied forging pressure and the other region corresponds to the position of slurry being squeezed and extruded. Microstructural characteristics such as average grain size, volume fraction, and form factor of the α-Al were evaluated as the Si content was changed from 5 to 7 wt pct at 0.5 wt pct intervals. As the Si content increased, the particle size of α-Al and tensile strength increased, while the volume fraction of α-Al and elongation decreased. At lower Si contents, solidification shrinkage was observed, resulting in a decrease in the elongation. At 5 and 6 wt pct Si, α-Al particles were agglomerated, and shrinkage was observed. Uniform, fine, and globular microstructures were obtained at 6 wt pct Si. At 6 and 7 wt pct Si, α-Al particles were coarsened. The forging pressure was changed from 100 to 250 MPa, and at a forging pressure of 250 MPa, shrinkage was observed. As the forging pressure was increased from 100 to 200 MPa, the tensile strength and elongation increased, and the particle size of α-Al decreased. At a forging pressure of 250 MPa, α-Al particles were deformed and agglomerated, which decreased the strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 1 F.C. Campbell Jr: Manufacturing Technology for Aerospace Structural Materials, Elsevier Ltd., UK, 2006, pp. 15-65.

    Book  Google Scholar 

  2. 2 J.E. Hatch: Aluminum: Properties and Physical Metallurgy, American Society for Metals, Ohio, OH, 1984, pp. 200-41.

    Google Scholar 

  3. 3 J.R. Davis: Aluminum and Aluminum Alloys, ASM International, Ohio, OH, 1993, pp. 199-274.

    Google Scholar 

  4. 4 A. Pola, M. Tocci, and P. Kapranos: Metals (Basel)., 2018, vol. 8, p. 181.

    Article  Google Scholar 

  5. J.G. Kaufman and E.L. Rooy (2004) Aluminum Alloy Castings: Properties, Processes, and Applications. ASM International, Ohio

    Google Scholar 

  6. 6 Z. Fan: Int. Mater. Rev., 2002, vol. 47, pp. 49–85.

    Article  Google Scholar 

  7. 7 M.C. Flemings: Metall. Trans. A, 1991, vol. 22, pp. 269–93.

    Article  Google Scholar 

  8. KP Flemings, MC, Riek, RG Young (1976) Mater. Sci. Eng. 25:103–17.

    Article  Google Scholar 

  9. D Zhang, HV Atkinson, HDong, Q Zhu (2017) Metall. Mater. Trans. A 48A:4701–12.

    Article  Google Scholar 

  10. J Santos, LH Kallien, AEW. Jarfors, AK Dahle (2018) Metall. Mater. Trans. A 49A:4871–83.

    Article  Google Scholar 

  11. S.P. Midson and A. Jackson: World Foundry Congr., 2006, pp. 1–10.

  12. 12 D. Apelian, M.C. Flemings, and R. Mehrabian: J. Mater. Sci., 1975, vol. 10, pp. 460–8.

    Article  Google Scholar 

  13. 13 S. Nafisi and R. Ghomashchi: Semi-Solid Processing of Aluminum Alloys, Springer International Publishing, Swizerland, 2016, pp. 1-41.

    Book  Google Scholar 

  14. 14 P.A. Joly and R. Mehrabian: J. Mater. Sci., 1974, vol. 9, pp. 1446–55.

    Article  Google Scholar 

  15. LR Morris, R Iricibar, JD Embury, J Duncan (1982) Am. Soc. Met. 1982:549–82.

    Google Scholar 

  16. 16 K.S. Park, Y.S. Jang, B.H. Choi, B.K. Kang, H.S. Kim, S.H. Choi, and C.P. Hong: J. Korean Foundrymens Soc., 2012, vol. 32, pp. 98–103.

    Article  Google Scholar 

  17. SY Park, WJ Kim (2017) Metall. Mater. Trans. A 48A:3523–39.

    Article  Google Scholar 

  18. M Li, YD Li, HQ Zheng, XF Huang, TJ Chen, Y Ma (2018) Trans. Nonferrous Met. Soc. China (English Ed) 28:879–89.

    Article  Google Scholar 

  19. B.H. Choi, Y.S. Jang, B.K. Kang, and C.P. Hong: Mater. Trans., 2014, vol. 55, pp. 1727–32.

    Article  Google Scholar 

  20. M.H.S. Ansari and M. Aghaie-Khafri: Int. J. Mater. Form., 2018, vol. 11, pp. 165–73.

    Article  Google Scholar 

  21. T. Rattanochaikul, S. Janudom, N. Memongkol, and J. Wannasin: 2010, vol. 20, pp. 17–21.

    Google Scholar 

  22. B.K. Kang, C.P. Hong, Y.S. Jang, B.H. Choi, and I. Sohn: Mater. Trans., 2016, vol. 57, pp. 410–6.

    Article  Google Scholar 

  23. CG Kang, SM Lee (2008) Proc. Inst. Mech. Eng. Part B 222:1673–84.

    Article  Google Scholar 

  24. 24 S.G. Shabestari and E. Parshizfard: J. Alloys Compd., 2011, vol. 509, pp. 7973–8.

    Article  Google Scholar 

  25. P. Kapranos, D.H. Kirkwood, H. V. Atkinson, J.T. Rheinlander, J.J. Bentzen, P.T. Toft, C.P. Debel, G. Laslaz, L. Maenner, S. Blais, J.M. Rodriguez-Ibabe, L. Lasa, P. Giordano, G. Chiarmetta, and A. Giese: J. Mater. Process. Technol., 2003, vol. 135, pp. 271–7.

    Article  Google Scholar 

  26. BH Choi, YS Jang, BK Kang, CP Hong (2014) Mater. Trans. 55:930–36.

    Article  Google Scholar 

  27. 27 B.K. Kang, C.P. Hong, B.H. Choi, Y.S. Jang, and I. Sohn: Met. Mater. Int., 2015, vol. 21, pp. 153–8.

    Article  Google Scholar 

  28. 28 J.B. Patel, Y.Q. Liu, G. Shao, and Z. Fan: Mater. Sci. Eng. A, 2008, vol. 476, pp. 341–9.

    Article  Google Scholar 

  29. 29 L. Wang, M. Makhlouf, and D. Apelian: Int. Mater. Rev., 1995, vol. 40, pp. 221–38.

    Article  Google Scholar 

  30. 30 M. Moscovitch and L.C. Smith: Science, 1979, vol. 205, pp. 710–3.

    Article  Google Scholar 

  31. 31 E.E. Underwood: in Microstructural Analysis, Springer US, Boston, MA, 1973, pp. 35–66.

    Book  Google Scholar 

  32. 32 K.R. Ravi, R.M. Pillai, K.R. Amaranathan, B.C. Pai, and M. Chakraborty: J. Alloys Compd., 2008, vol. 456, pp. 201–10.

    Article  Google Scholar 

  33. 33 M. Di Sabatino and L. Arnberg: Metall. Sci. Technol., 2004, vol. 22, pp. 9–15.

    Google Scholar 

  34. 34 C. Lin, S. Wu, S. Lü, P. An, and H. Wu: Mater. Sci. Eng. A, 2018, vol. 713, pp. 105–11.

    Article  Google Scholar 

  35. 35 M.R. Ghomashchi and A. Vikhrov: J. Mater. Process. Technol., 2000, vol. 101, pp. 1–9.

    Article  Google Scholar 

  36. 36 N. Hansen: Scr. Mater., 2004, vol. 51, pp. 801–6.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the BK21PLUS Project in the Division of Eco-Humantronics Information Materials and supported by the Technology Innovation Program (No. 10052751, Development of continuous production technology of TiCl4 from Ilmenite ore containing 55 to 60 pct TiO2) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Sohn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 22, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, B.K., Sohn, I. Effects of Si Content and Forging Pressure on the Microstructural and Mechanical Characteristics in Semi-solid Forging of Al-Si-Mg Alloys. Metall Mater Trans A 50, 3213–3222 (2019). https://doi.org/10.1007/s11661-019-05229-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05229-6

Navigation