Skip to main content
Log in

Influence of Forging Temperature on the Microstructures and Mechanical Properties of a Multi-Directionally Forged Al–Cu–Li Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Optimization of forging process to improve the microstructure and mechanical properties of 2195 Al–Cu–Li alloy forgings is an urgent issue. In this study, a homogenized 2195 alloy ingot was subjected to multi-directional forging (MDF), annealing, and forging at 500 °C, 420 °C, and 240 °C with a 50% reduction in cross-sectional area, followed by a T8 heat treatment (involving solution, quenching, cold compression, and aging). The microstructural evolution during the process and the final mechanical properties in three orthogonal directions were examined. The results showed that the grain structures of the alloy were significantly refined after MDF by dynamic recrystallization (DRX), but the structure was thermally unstable and formed coarse grains during subsequent annealing by static recrystallization (SRX). The T8-treated samples forged at 500 °C, 420 °C, and 240 °C obtained fine and uniform grain structures by DRX, inhomogeneous grain structures by partial SRX, and uniform, equiaxed grain structures by full SRX, respectively. The average grain size of the forging increased with decreasing forging temperature because more significant SRX occurred for the forging that was deformed at lower temperatures. The grain structures had minimal influence on precipitation behavior and strength but had a significant influence on elongation. The fine and uniform grain structures improved the elongation; whereas, the inhomogeneous grain structures, which contained extremely large grains, significantly deteriorated the elongation. The uniform, equiaxed grain structures decreased the anisotropy in three orthogonal directions and maintained fine elongation even though the average grain size of the forging was the largest.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. R.J. Rioja, J. Liu, Metall. Mater. Trans. A 43, 3325 (2012)

    CAS  Google Scholar 

  2. N. Nayan, S.V.S. Narayana Murty, A.K. Mukhopadhyay, K.S. Prasad, A.K. Jha, B. Pant, S.C. Sharma, K.M. George, Mater. Sci. Eng. A 585, 475 (2013)

    CAS  Google Scholar 

  3. T. Dursun, C. Soutis, Mater. Des. 56, 862 (2014)

    CAS  Google Scholar 

  4. Q. Pu, Z. Jia, Y. Kong, Q. Yang, Z. Zhang, X. Fan, H. Zhang, L. Lin, Q. Liu, Mater. Sci. Eng. A 784, 139337 (2020)

    CAS  Google Scholar 

  5. N. Nayan, S.V.S.N. Murty, A.K. Jha, B. Pant, S.C. Sharma, K.M. George, G.V.S. Sastry, Mater. Sci. Eng. A 576, 21 (2013)

    CAS  Google Scholar 

  6. B. Li, E.J. Lavernia, in Pergamon Materials Series, vol. 2, ed. by C. Suryanarayana, Chapter 7 Spray-forming (Elsevier, Amsterdam, 1999), pp. 153–193

  7. A. Hekmat-Ardakan, E.M. Elgallad, F. Ajersch, X.G. Chen, Mater. Sci. Eng. A 558, 76 (2012)

    CAS  Google Scholar 

  8. G.T. Sudha, B. Stalin, M. Ravichandran, M. Balasubramanian, Mater. Today Proc. 22, 2582 (2020)

    CAS  Google Scholar 

  9. H.A. Godinho, A.L.R. Beletati, E.J. Giordano, C. Bolfarini, J. Alloy. Compd. 586, S139 (2014)

    CAS  Google Scholar 

  10. X. Xu, G. Zhao, Y. Wang, X. Chen, C. Zhang, Vacuum 167, 28 (2019)

    CAS  Google Scholar 

  11. C. Zhang, M. Liu, Z. Meng, Q. Zhang, G. Zhao, L. Chen, H. Zhang, J. Wang, J. Mater. Process. Tech. 283, 116718 (2020)

    CAS  Google Scholar 

  12. X. Yang, W. Huang, X. Zhu, R. Zhang, F. Guo, L. Hu, Characterization of the hot deformation behaviour of an as-extruded Al–Cu–Li alloy by constitutive analysis. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00800-y

    Article  Google Scholar 

  13. R.K. Gupta, N. Nayan, G. Nagasireesha, S.C. Sharma, Mater. Sci. Eng. A 420, 228 (2006)

    Google Scholar 

  14. M. Suresh, A. Sharma, A.M. More, R. Kalsar, A. Bisht, N. Nayan, S. Suwas, J. Alloy. Compd. 785, 972 (2019)

    CAS  Google Scholar 

  15. S. Kumar, R. Singh, D. Singh, Mater. Today Proc. 5, 3486 (2018)

    CAS  Google Scholar 

  16. X. Chen, G. Zhao, G. Liu, L. Sun, L. Chen, C. Zhang, J. Mater. Process. Tech. 275, 116348 (2020)

    CAS  Google Scholar 

  17. B. Shen, L. Deng, X. Wang, Mater. Sci. Eng. A 625, 288 (2015)

    CAS  Google Scholar 

  18. Q. Zhang, C. Zhang, J. Lin, G. Zhao, L. Chen, H. Zhang, Mater. Sci. Eng. A 742, 773 (2019)

    CAS  Google Scholar 

  19. Y. Wang, G. Zhao, X. Xu, X. Chen, W. Zhang, Mater. Sci. Eng. A 727, 78 (2018)

    CAS  Google Scholar 

  20. Y. Wang, G. Zhao, X. Xu, X. Chen, C. Zhang, J. Alloy. Compd. 779, 735 (2019)

    CAS  Google Scholar 

  21. Q. Yang, X. Wang, X. Li, Z. Deng, Z. Jia, Z. Zhang, G. Huang, Q. Liu, Mater. Charact. 131, 500 (2017)

    CAS  Google Scholar 

  22. A. AbdEl-Aty, Y. Xu, X. Guo, S. Zhang, Y. Ma, D. Chen, J. Adv. Res. 10, 49 (2018)

    CAS  Google Scholar 

  23. H. He, Y. Yi, S. Huang, Y. Zhang, Mater. Sci. Eng. A 712, 414 (2018)

    CAS  Google Scholar 

  24. Y. Yang, F. Ma, H.B. Hu, Q.M. Zhang, X.W. Zhang, Mater. Sci. Eng. A 606, 299 (2014)

    CAS  Google Scholar 

  25. J. Huang, Y. Yi, S. Huang, F. Dong, W. Guo, D. Tong, H. He, Met. Mater. Int. 27, 815 (2021)

    Google Scholar 

  26. X. Mao, Y. Yi, S. Huang, W. Guo, H. He, Grain refinement and thermal stability of 2219 aluminum alloy in the warm deformation process. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00898-0

    Article  Google Scholar 

  27. W. Guo, Y. Yi, S. Huang, H. He, J. Fang, Met. Mater. Int. 26, 56 (2020)

    CAS  Google Scholar 

  28. T. Khelfa, J.A. Muñoz-Bolaños, F. Li, J.M. Cabrera-Marrero, M. Khitouni, Met. Mater. Int. 26, 1247 (2020)

    CAS  Google Scholar 

  29. P. Ma, L. Zhan, C. Liu, Q. Wang, H. Li, D. Liu, Z. Hu, J. Alloy. Compd. 790, 8 (2019)

    CAS  Google Scholar 

  30. M. Suresh, A. Sharma, A.M. More, N. Nayan, S. Suwas, J. Alloy. Compd. 740, 364 (2018)

    CAS  Google Scholar 

  31. E. Balducci, L. Ceschini, S. Messieri, S. Wenner, R. Holmestad, Mater. Sci. Eng. A 707, 221 (2017)

    CAS  Google Scholar 

  32. H. Qin, H. Zhang, H. Wu, Mater. Sci. Eng. A 626, 322 (2015)

    CAS  Google Scholar 

  33. N. Jiang, X. Gao, Z. Zheng, T. Nonferr. Metal. Soc. 20, 740 (2010)

    CAS  Google Scholar 

  34. D.G. Morris, M.A. Muñoz-Morris, Intermetallics 23, 169 (2012)

    CAS  Google Scholar 

  35. D.G. Morris, M.A. Muñoz-Morris, J. Alloy. Compd. 536, S180 (2012)

    CAS  Google Scholar 

  36. H. Yu, N. Wang, R. Guan, D. Tie, Z. Li, Y. An, Y. Zhang, J. Mater. Sci. Technol. 34, 2297 (2018)

    Google Scholar 

  37. H. He, Y. Yi, S. Huang, Y. Zhang, Mater. Charact. 135, 18 (2018)

    CAS  Google Scholar 

  38. T. Dorin, A. Deschamps, F. De Geuser, W. Lefebvre, C. Sigli, Philos. Mag. 94, 1012 (2014)

    CAS  Google Scholar 

  39. B.I. Rodgers, P.B. Prangnell, Acta Mater. 108, 55 (2016)

    CAS  Google Scholar 

  40. S. Nouri, S. Sahmani, M. Hadavi, S. Mirdamadi, Met. Mater. Int. 26, 1134 (2020)

    CAS  Google Scholar 

  41. P. Donnadieu, Y. Shao, F. De Geuser, G.A. Botton, S. Lazar, M. Cheynet, M. de Boissieu, A. Deschamps, Acta Mater. 59, 462 (2011)

    CAS  Google Scholar 

  42. C. Dwyer, M. Weyland, L.Y. Chang, B.C. Muddle, Appl. Phys. Lett. 98, 5775 (2011)

    Google Scholar 

  43. Y.Q. Chen, D.Q. Yi, Y. Jiang, B. Wang, H.Q. Liu, Philos. Mag. 93, 2269 (2013)

    CAS  Google Scholar 

  44. W. Huo, L. Hou, H. Cui, L. Zhuang, J. Zhang, Mater. Sci. Eng. A 618, 244 (2014)

    CAS  Google Scholar 

  45. W. Huo, L. Hou, Y. Lang, H. Cui, L. Zhuang, J. Zhang, Mater. Sci. Eng. A 626, 86 (2015)

    CAS  Google Scholar 

  46. H. Wang, Y. Yi, S. Huang, J. Alloy. Compd. 685, 941 (2016)

    CAS  Google Scholar 

  47. H. He, Y. Yi, S. Huang, W. Guo, Y. Zhang, J. Mater. Process. Tech. 278, 116506 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 52005518) and China Postdoctoral Science Foundation (Grant No. 2020M672510).

Author information

Authors and Affiliations

Authors

Contributions

HH: Conceptualization, Investigation, Writing original draft. KC: Conceptualization, Methodology, Supervision, editing. YY: Conceptualization, Resources, Methodology, Supervision. WY: Materials, Supervision. YG: Materials, Supervision. BW: Data curation, Supervision. JT: Data curation, Supervision. WG: Data curation, Supervision. SH: Methodology, Supervision, editing.

Corresponding authors

Correspondence to Kanghua Chen or Youping Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Chen, K., Yi, Y. et al. Influence of Forging Temperature on the Microstructures and Mechanical Properties of a Multi-Directionally Forged Al–Cu–Li Alloy. Met. Mater. Int. 28, 433–447 (2022). https://doi.org/10.1007/s12540-021-01022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01022-6

Keywords

Navigation