Skip to main content
Log in

Application of an Equiaxed Grain Growth and Transport Model to Study Macrosegregation in a DC Casting Experiment

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A simplified three-phase, multiscale macrosegregation model which describes the growth kinetics of equiaxed grains and the coupling between microstructure morphology and the macroscopic transport has been proposed previously. In this paper, the model is validated by comparing the numerical model predictions to the experimental data from DC casting of an AA7050 alloy billet. The morphology of the equiaxed grains has an important influence on the macrosegregation, and we show that the model predictions are accurate when the grain morphology is described correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C i,〉:

Average mass concentration of solute i (wt pct)

C *, i 〉:

Average equilibrium mass concentration of solute i (wt pct)

C o, i :

Mean concentration of solute i (wt pct)

c p :

Specific heat (J kg−1 K)

C D :

Drag co-efficient (–)

d :

Diameter of inoculant particle (m)

D , i :

Diffusion coefficient of solute i (m2 s−1)

g :

Volume fraction (–)

g pack :

Packing fraction (–)

g intern :

Internal solid fraction (–)

\( \vec{\varvec{g}} \) :

Acceleration due to gravity (m s−2)

h ll :

Averaged liquid enthalpy (J kg−1)

h ss :

Averaged solid enthalpy (J kg−1)

h m :

Mixture enthalpy (J kg−1)

h primary :

Primary cooling heat-transfer coefficient (W m−2 K−1)

h secondary :

Secondary cooling heat-transfer coefficient (Wm−2 K−1)

k p, i :

Partition coefficient of solute i (–)

K :

Permeability (m2)

L f :

Latent heat of fusion (J kg−1)

l kc :

Characteristic length for permeability (m)

m l, i :

Liquidus slope of solute i, K (wt pct−1)

N inuc :

Volumetric number density (m−3)

N g :

Grain density (m−3)

p l :

Liquid pressure (N m−2)

P :

Perimeter of the ingot (m)

Q water :

Water flow rate (m3 s−1)

R env :

Radius of the envelope (m)

R s,eq :

Radius of the solid grain (m)

Re :

Reynolds number

S v :

Interfacial area density (m−1)

Sc :

Schmidts number

t :

Time (s)

T :

Temperature (K)

T water :

Temperature of cooling water (K)

T sat :

Temperature of boiling water (K)

T cast :

Casting temperature (K)

T liq :

Temperature of liquidus (K)

T m :

Melting temperature of pure Al (K)

T eut :

Eutectic temperature (K)

ΔT :

Undercooling (K)

ΔT c :

Critical undercooling for nucleation (K)

\(\langle \vec{v}_{\text{l}}\rangle^{\text{l}} \) :

Intrinsic average velocity of liquid phase (ms−1)

\( \langle\vec{v}_{\text{s}}\rangle^{\text{s}} \) :

Intrinsic average velocity of solid phase (ms−1)

\( \vec{V}_{\text{cast}} \) :

Casting velocity (ms−1)

V tip :

Velocity of dendrite tip (ms−1)

β T :

Thermal expansion coefficient (K)

β C, i :

Solutal expansion coefficient of solute i, (pct w−1)

δ i :

Diffusion length of solute i (− m)

δ(t):

Dirac function

ΓGT :

GIBBS–Thomson co-efficient (Km)

Γ:

Growth rate (kg m−3 s−1)

κ :

Thermal conductivity (W m−1 K)

ρ l :

Liquid density (kg m−3)

ρ s :

Solid density used to account for shrinkage (kg m−3)

ρ l,b :

Liquid buoyancy density used to account for Bousinessq approximation (kg m−3)

ρ s,b :

Solid buoyancy density used to account for grain motion (kg m−3)

ρ m :

Mixture density (kg m−3)

μ l :

Liquid dynamic viscosity (Pa s)

l:

Liquid

s:

Solid

env:

Envelope

e:

Extragranular liquid

d:

Intragranular liquid

s–d:

Solid–liquid interface

e–d:

Intra-extra granular liquid interface

* :

equilibrium

l,b:

Liquid buoyancy

s,b :

Solid buoyancy

References

  1. A. V. Reddy and N.C. Beckermann: Metall. Mater. Trans. B, 1997, vol. 28, pp. 479–89.

    Article  CAS  Google Scholar 

  2. G. Lesoult, V. Albert, B. Appolaire, H. Combeau, D. Daloz, A. Joly, C. Stomp, G.U. Grün, and P. Jarry: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 285–91.

    Article  CAS  Google Scholar 

  3. K.O. Tveito, A. Pakanati, M. M’Hamdi, H. Combeau, and M. Založnik: Metall. Mater. Trans. A, 2018, vol. 49, pp. 2778–94.

    Article  CAS  Google Scholar 

  4. L. Heyvaert, M. Bedel, M. Založnik, and H. Combeau: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4713–34.

    Article  CAS  Google Scholar 

  5. A. Olmedilla, M. Založnik, B. Rouat, and H. Combeau: Phys. Rev. E., 2018, 1:1–12. https://doi.org/10.1103/physreve.97.012910.

    Article  Google Scholar 

  6. M. Bedel, K.O. Tveito, M. Založnik, H. Combeau, and M. M’Hamdi: Comput. Mater. Sci., 2015, vol. 102, pp. 95–109.

    Article  CAS  Google Scholar 

  7. M. Rappaz: Int. Mater. Rev., 1989, vol. 34, pp. 93–124.

    Article  CAS  Google Scholar 

  8. J. Ni and C. Beckermann: Metall. Trans. B 1991, vol. 22, pp. 349–61.

    Article  Google Scholar 

  9. C.Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2754–64.

    Article  CAS  Google Scholar 

  10. M. Wu, A. Ludwig, A. Buhrig-Polaczek, M. Fehlbier, and P.R. Sahm: Int. J. Heat Mass Transf., 2003, vol. 46, pp. 2819–32.

    Article  CAS  Google Scholar 

  11. M. Wu and A. Ludwig: Acta Mater., 2009, vol. 57, pp. 5621–5631.

    Article  CAS  Google Scholar 

  12. M. Wu, A. Fjeld, and A. Ludwig: Comput. Mater. Sci., 2010, vol. 50, pp. 43–58.

    Article  CAS  Google Scholar 

  13. M. Založnik and H. Combeau: Comput. Mater. Sci., 2010, vol. 48, pp. 1–10.

    Article  CAS  Google Scholar 

  14. H. Combeau, M. Založnik, S. Hans, and P.E. Richy: Metall. Mater. Trans. B, 2009, vol. 40, pp. 289–304.

    Article  CAS  Google Scholar 

  15. A. Kumar, M. Založnik, and H. Combeau: Int. J. Adv. Eng. Sci. Appl. Math., 2010, vol. 2, pp. 140–8.

    Article  Google Scholar 

  16. J. Li, M. Wu, A. Ludwig, and A. Kharicha: Int. J. Heat Mass Transf., 2014, vol. 72, pp. 668–79.

    Article  CAS  Google Scholar 

  17. M. Wu, A. Ludwig, and A. Kharicha: Steel Res. Int., 2018, vol. 89, pp. 1–14.

    CAS  Google Scholar 

  18. T. Jalanti: PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Laussanne, Switzerland, 2000.

  19. C.J. Vreeman and F.P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 687–704.

    Article  CAS  Google Scholar 

  20. M. Založnik and B. Šarler: Model. Cast. Weld. Adv. Solidif. Process. XI, 2006, pp. 243–50.

  21. L. Zhang, D.G. Eskin, A. Miroux, T. Subroto, and L. Katgerman: IOP Conf. Ser. Mater. Sci. Eng., 2012, vol. 33, pp. 1–8.

    Google Scholar 

  22. Q. Du, D.G. Eskin, and L. Katgerman: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2007, vol. 38, pp. 180–89.

  23. A. V. Reddy and C. Beckermann: Mater. Process. Comput. Age II, 1995, pp. 89–102.

    Google Scholar 

  24. M. Založnik, A. Kumar, H. Combeau, M. Bedel, P. Jarry, and E. Waz: Adv. Eng. Mater., 2011, vol. 13, pp. 570–80.

    Article  CAS  Google Scholar 

  25. A. Hakonsen, D. Mortensen, S. Benum, and H.E. Vatne: in Light Metals, TMS, Warrendale, PA, 1999, pp. 821–7.

    Google Scholar 

  26. M. Bedel, L. Heyvaert, M. Založnik, H. Combeau, D. Daloz, and G. Lesoult: IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 84 (1), pp. 1–8.

    Google Scholar 

  27. H. Combeau, M. Založnik, and M. Bedel: Jom, 2016, vol. 68, pp. 2198–206.

    Article  CAS  Google Scholar 

  28. L. Zhang, D.G. Eskin, A. Miroux, T. Subroto, and L. Katgerman: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1–9.

    Google Scholar 

  29. A.L. Greer, A.M. Bunn, A. Tronche, P. V. Evans, and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823–35.

    Article  CAS  Google Scholar 

  30. M. Rappaz and P.H. Thévoz: Acta Metall., 1987, vol. 35, pp. 2929–33.

    Article  CAS  Google Scholar 

  31. M. Rappaz and W.J. Boettinger: Acta Mater., 1999, vol. 47, pp. 3205–19.

    Article  CAS  Google Scholar 

  32. D. Weckman and P. Niessen: Metall. Trans. B, 1982, vol. 13, pp. 593–602.

    Article  Google Scholar 

  33. A.L. Dons, E.K. Jensen, Y. Langsrud, E. Trømborg, and S. Brusethaug: Metall. Mater. Trans. A, 1999, vol. 30, pp. 2135–2146.

    Article  CAS  Google Scholar 

  34. Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, and F.Y. Xie: Mater. Sci. Eng. A, 2003, vol. 363, pp. 140–51.

    Article  CAS  Google Scholar 

  35. C.J. Vreeman, M.J.M. Krane, and F.P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 677–86.

    Article  CAS  Google Scholar 

  36. I. Vušanović and M.J.M. Krane: Mater. Sci. Eng. 1:1-12 (2011). doi:10.1088/1757-899x/27/1/012069.

    Article  Google Scholar 

  37. A. Pakanati, K.O. Tveito, M. M’Hamdi, H. Combeau, and M. Založnik: in Light Metals 2018. TMS 2018. The Minerals, Metals & Materials Series, Martin O. ed., Springer, Cham, 2018, pp. 1089–96.

  38. A. Tronche: PhD thesis, University of Cambridge, Cambridge, England, 2000.

  39. M. Založnik, S. Xin, and B. Šarler: Int. J. Numer., 2008, vol. 18, pp. 308–324.

    Article  CAS  Google Scholar 

  40. C.Y. Wang and C. Beckermann: Metall. Trans. A, 1993, vol. 24, pp. 2787–802.

    Article  Google Scholar 

  41. Ø. Nielsen, B. Appolaire, H. Combeau, and A. Mo: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2049–60.

    Article  CAS  Google Scholar 

  42. M.A. Martorano, C. Beckermann, and C.A. Gandin: Metall. Mater. Trans., 2003, vol. 32, pp. 1657–74.

    Article  Google Scholar 

  43. B. Appolaire, H. Combeau, and G. Lesoult: Mater. Sci. Eng. A, 2008, vol. 487, pp. 33–45.

    Article  CAS  Google Scholar 

  44. M. Wu and A. Ludwig: Acta Mater., 2009, vol. 57, pp. 5632–44.

    Article  CAS  Google Scholar 

  45. M. Bedel: PhD theses, Université de Lorraine, Nancy, France, 2014.

  46. M. Torabi Rad, M. Založnik, H. Combeau, and C. Beckermann: Materialia, 2019, article in press.

Download references

Acknowledgments

This study was conducted within the framework of PRIMAL project, of which Hydro Aluminium ASA, Alcoa Norway ANS, Aleris Rolled Products Germany GmbH, Institute of Energy Technology (IFE), NTNU, and SINTEF are the partners. This project is supported by the Research Council of Norway. A.P and M.M acknowledge the support of NOTUR High Performance Computing program. H.C and M.Z. acknowledge the support by the French State through the program “Investment in the future” run by the National Research Agency (ANR) and referenced by ANR-11 LABX-0008-01 (LabEx DAMAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed M’Hamdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 9, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakanati, A., Tveito, K.O., M’Hamdi, M. et al. Application of an Equiaxed Grain Growth and Transport Model to Study Macrosegregation in a DC Casting Experiment. Metall Mater Trans A 50, 1773–1786 (2019). https://doi.org/10.1007/s11661-019-05133-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05133-z

Navigation