Skip to main content
Log in

Influence of Microstructure and Crystallographic Texture on the Surface Brightness of Industrially Produced Tinplated Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Three distinct layers are present in commercially produced tinplated steels: the top tin layer, the middle Fe-Sn alloy layer, and the bottom steel substrate. The brightness of these steels is inversely proportional to the roughness of the top layer. Substrate steels with recrystallized structure, sharper texture, and cleaner matrix result in flatter Fe-Sn interlayer and subsequently smoother top Sn layer. This in turn gives brighter surface finish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Morita J, Ezure K, Yoshida M and Ohga T, Nippon Steel Technical Report, 1994, 63 40-47

    Google Scholar 

  2. Catalá R, Cabañares JM, and Bastidas JM, Corrosion Science, 1998, 40, 1455 -1467

    Article  Google Scholar 

  3. Gines Marcelo J L, Benitez GJ, Egli W, Zubimendi JL and Perez T, Plating and Surface Finishing, 2003, October, 2-7

    Google Scholar 

  4. Ramamurthy S, Walzak TL, Lu SF, Lipson TC and McIntyre NS, 1991, 17, 834-841

    Article  Google Scholar 

  5. Bigerelle M, Marteau J, Paulin C, Surface Topography: Metrology and Properties, 2015, 3, 1-13

    Google Scholar 

  6. Darrort V, Troyon M, Ebotht J, Bissieux C, Nicollin C, Thin Solid Films, 1995, 265, 52-57.

    Article  Google Scholar 

  7. Well R and Paquin RA, J. Electrochem. Soc., 1960, 107, 87-91

    Article  Google Scholar 

  8. Aoki K, Noro K, Azushima A,” Tetsu-to-Hagane, 2008, 94, 438-444

    Article  Google Scholar 

  9. P. Ghosh, Project report: Inconsistency in the Brightness of Tinplated Steels: Root Cause Analysis and Possible Remedies, 2017, Tata Steel, India

  10. J.J.M. Granzier, R. Vergne, and K.R. Gegenfurtner: J. Vis., 2014, vol. 14, pp. 41–20.

    Google Scholar 

  11. P. Saikia, A. Joseph, R. Rane, B.K. Saikia, and S. Mukherjee: J. Theor. Appl. Phys., 2013, vol. 7, art. no. 66.

  12. S. Wienströer, M. Fransen, H. Mittelstädt, C. Nazikkol, M. Völker: Adv. X-ray Anal., 2003, vol. 46, p. 291.

  13. Chakraborty A, Ray RK, Surface and Coatings Technology, 2009, 203, 1756-1764

    Article  Google Scholar 

  14. Y. Deng, H. Di, J. Zhang, and R.D.K. Misra: Metall. Res. Technol., 2017, vol. 114, art. no. 502.

  15. N. Niehaus, W. Friehe, W. Schwenk, US Patent 4,513,995, 1985.

  16. E.E. Vonada: US Patent 2,673,836, 1954.

  17. J.S. Nachtman: US Patent 2,240,265, 1941.

  18. Clarke M, Bernie JA, Electrochimica Acta, 1967, 12, 205-212

    Article  Google Scholar 

  19. T.F. Davis: US Patent 4,194,913, 1980.

  20. J. Heber, A. Egli, M. Toben, and F. Schwager: US Patent App. 10/098,983, 2002.

  21. Van Houtte P, The MTM-FHM Software System, Version 2, Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Belgium

    Google Scholar 

  22. Bunge HJ, “Zeitschrift Fur Metallkunde, 1965, 56, 872-874

    Google Scholar 

  23. Van Houtte P, Texture and Microstructures, 1987, 7, 29-72

    Article  Google Scholar 

  24. Van Houtte P, Texture and Microstructures, 1987, 7, 187-205

    Article  Google Scholar 

  25. Van Houtte P, ICOTOM, 1984, 7, 7-23

    Google Scholar 

  26. Daniel D and Jonas JJ, Metallurgical Transaction, 1990, 21A, 331-343

    Article  Google Scholar 

  27. Ray RK, Jonas JJ and. Hook EE, Int. Materials review, 1994, 39, 129–172

    Article  Google Scholar 

  28. Biber HE and Harter WT, Journal of the Electrochemical Society, 1966, 113, 828-834

    Article  Google Scholar 

  29. Hokkeling P, Damsma H and Havinga EE, Journal of the Less-Common Metals, 1972, 27, 169-186

    Article  Google Scholar 

  30. S. Suwas and R. K. Ray, Crystallographic Texture of Materials, Engineering Materials and Processes, Springer-Verlag London 2014

    Google Scholar 

  31. Cheong S and Weiland H, Materials Science Forum, 2007, 558-559, 153-158

    Article  Google Scholar 

  32. Ayad A, Bonasso NA, Rouag N and Wagner F; Materials Science Forum, 2011, 702-703, 269-272.

    Article  Google Scholar 

  33. Dutta B and Sellars CM, Mater. Sci. Technol.,1987, 3, 197-206

    Article  Google Scholar 

  34. Ghosh C, Aranas C Jr. and Jonas JJ, Progress in Materials Science, 2016, 82, 151-233

    Article  Google Scholar 

  35. Ghosh C, Basabe VV, Jonas JJ, Kim YM, Jung IH and Yue S, Acta Mater., 2013, 61, 2348-2362

    Article  Google Scholar 

  36. Maa X, Mia C, Langeliera B and Subramanian S, Materials & Design, 2017, 132, 244-249

    Article  Google Scholar 

  37. Mills AR, Thewlis G and Whiteman JA, Mater. Sci. Technol., 1987, 3, 1051–1061

    Article  Google Scholar 

  38. Thewlis G, Mater. Sci. Technol., 1994, 10, 110

    Article  Google Scholar 

  39. Grong O, Kluken AO, Hylund HK, Dons AL and Hjelen H, Metall. Mater. Trans. A, 1995, 26A, 525.

    Article  Google Scholar 

  40. Yamada T, Terasaki H and Komizo YI, ISIJ International, 2009, 49, 1059–1062

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the management of Tata Steel, India for giving us the permission to publish this paper. The principal author would also like to thank Mr. Soumya Chatterjee for the many fruitful discussions they had from time to time. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data Availability statement

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pampa Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 26, 2018.

Appendix A

Appendix A

Time of reaction: 16 seconds

1 lb/bb = 22.4 g/m2

Atomic weight of Sn: 118.7

Atomic weight of Fe: 55.8

Density of FeSn2: 8.55 g/cc

  1. 1.

    Calculation of Sn in the form of FeSn2 formed on steel substrate after 16 seconds[28]:

    • On (100) surface = 0.25 lb/bb = 2.8 g/m2

    • On (110) surface = 0.13 lb/bb = 1.456 g/m2

    • On (111) surface = 0.17 lb/bb = 1.904 g/m2

  2. 2.

    Calculation of FeSn2 formed on steel substrate after 16 seconds:

In FeSn2, 2Sn atoms attached with one Fe atom.

Therefore, (2 × 118.7) g of Sn is present in (2 × 118.7 + 55.8) g FeSn2

$$ \begin{aligned} 2 3 7. 4 {\text{ g of Sn }} & \equiv { 293}. 2 {\text{ g FeSn}}_{ 2} \\ {\text{So}},{ 2}. 8 {\text{ g of Sn }} & \equiv { 3}. 4 5 8 {\text{ g FeSn}}_{ 2} \\ {\text{So}},{ 1}. 4 5 6 {\text{ g of Sn }} & \equiv { 1}. 7 9 8 {\text{ g FeSn}}_{ 2} \\ {\text{So}},{ 1}. 90 4 {\text{ g of Sn }} & \equiv { 2}. 3 5 1 {\text{ g FeSn}}_{ 2} \\ \end{aligned}. $$

Therefore, after 16 seconds

  • (100) oriented grains of the samples would have 3.458 g/m2 or 3.458 × 10−4g/cm2 of FeSn2

  • (110) oriented grains of the samples would have 1.798 g/m2 or 1.798 × 10−4g/ cm2 of FeSn2

  • (111) oriented grains of the samples would have 2.351 g/m2 or 2.351 × 10−4g/ cm2 of FeSn2

  1. 3.

    Calculation of FeSn2 layer height on (100), (110), and (111) oriented grains

Assuming in the present case, the height of FeSn2 layer on (100), (110), and (111) are h100, h110, and h111, respectively.

For (100) oriented grains for every 1 cm2 area:

The volume of FeSn2 would be h100 *1 cm2 = h100 cm2. The weight of this FeSn2 as calculated is 3.458 × 10−4 g.

Now, the density of FeSn2 is 8.55 g/cm329.

Therefore, 3.458 × 10−4 g of FeSn2 ≡ 0.404 × 10−4 cm3 of FeSn2.

$$ \begin{aligned} {\text{So}}, \, h_{ 100} {\text{cm}}^{ 2} & = \, 0. 40 4 { } \times { 1}0^{ - 4} {\text{cm}}^{ 3} \\ h_{ 100} & = \, 0. 40 4 { } \times { 1}0^{ - 4} {\text{cm }} = 0.404 \, \mu {\text{m}} \\ \end{aligned}. $$

Similarly, h110 and h111 are calculated as =0.210 µm and 0.275 µ, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, P., Mondal, D., Tiwari, A. et al. Influence of Microstructure and Crystallographic Texture on the Surface Brightness of Industrially Produced Tinplated Steels. Metall Mater Trans A 50, 1825–1836 (2019). https://doi.org/10.1007/s11661-019-05129-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05129-9

Navigation