Skip to main content
Log in

Systematic Phase-Field Study on Microstructure Formation During Brazing of Mar-M247 with a Si-Based AMS4782 Filler

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Although advanced solidification processes like high temperature brazing have gained more and more industrial importance, they still are often not well understood, and defining optimal process conditions for practical use in many cases can be achieved only by expensive experimental trial and error methods. On the other hand, the phase-field method has become more and more powerful for the simulation of solidification and phase transformations in technical alloys. This paper presents phase-field simulations for high temperature brazing of the Ni-base superalloy Mar-M247 using a Si-based AMS4782 filler. The applied phase-field model can be online-coupled to Calphad databases which deliver the thermodynamic and mobility data for this complex multicomponent multiphase alloy. Unknown or uncertain physical parameters like diffusion coefficients have been calibrated by comparing to optical micrographs and EDX element mappings obtained from laboratory braze experiments for the same material combination. By variation of the process conditions the effects of the brazing temperature, the brazing time, and the thickness of the braze gap on precipitation of brittle phases and formation of stray grains as well as changes in the microstructure of the base material itself have been systematically investigated. Results are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. W.A. Demo and S.J. Ferrigno: Adv. Mater. Process., 1992, vol. 141, pp.43–5.

    Google Scholar 

  2. D.S. Duvall, W.A. Owczarski and D.F. Paulonis: Weld. J., 1974, vol. 53, pp. 203–14.

    Google Scholar 

  3. W.D. MacDonald and T.W. Eagar: Metall. Mater. Trans. A, 1998, vol. 29, pp. 315–25.

    Article  Google Scholar 

  4. S. Steuer and R.F. Singer: Metall. Mater. Trans. A, 2014, vol 45(8), pp. 3545-53.

    Article  Google Scholar 

  5. A. Ekrami, S. Moeinifar and A.H. Kokabi: Mat. Sci. Eng. A, 2007, vol. 456, pp. 93–8.

    Article  Google Scholar 

  6. S.D. Nelson, S. Liu, S. Kottilingam and J.C. Madeni: Welding in the World, 2014, vol. 58(4), pp. 593-600.

    Article  Google Scholar 

  7. B. Grushko and B. Z. Weiss: Mat. Sci. Eng., 1985, vol. 74, pp. 19-27.

    Article  Google Scholar 

  8. D. Shi, C. Dong, L. Zhang, X. Yang, J. Hou and Y. Liu, Mat. Sci. Eng. A, 2012, vol. 545, pp. 162–7.

    Article  Google Scholar 

  9. AA Wheeler, WJ Boettinger, GB Mc Fadden (1993) Phys. Rev. E 47:1893-909.

    Article  Google Scholar 

  10. S.G. Kim, W.T. Kim and T. Suzuki: Phys. Rev. E, 1999, vol. 60, pp. 7186-97.

    Article  Google Scholar 

  11. J. Eiken, B. Böttger, and I. Steinbach: Phys. Rev. E, 2006, vol. 73, art. id 066122.

  12. MICRESS software, http://www.micress.de. Accessed 30 Jul 2018

  13. B. Böttger, M. Apel, B. Laux, and S. Piegert: Mater. Sci. Eng., 2015, vol. 84, art. id 012031.

  14. B. Böttger, R. Altenfeld, G. Laschet, G. J. Schmitz, B. Stöhr and B. Burbaum: Integr. Mater. Manuf. Innov., 2018, vol. 7, pp. 70-85

    Article  Google Scholar 

  15. Themo-Calc Software, http://www.thermocalc.se. Accessed 30 Jul 2018

  16. B. Böttger, J. Eiken and M. Apel: Comput. Mater. Sci., 2015, vol. 108, p. 283-292.

    Article  Google Scholar 

  17. J. Eiken: Mater. Sci. Eng., 2012, vol. 33, art. id 012105.

  18. A. Carré, B. Böttger and M. Apel: J. Crystal Growth, 2014, vol 380, pp. 5–13.

    Article  Google Scholar 

  19. B. Böttger, J. Eiken and I. Steinbach: Acta Mater., 2006, vol. 54, p. 2697-2704.

    Article  Google Scholar 

  20. Thermotech Ltd., http://www.thermotech.co.uk. Accessed 30 Jul 2018

  21. V. Vaithyanathan, L.Q. Chen: Acta Mater., 2002, vol. 50, pp. 4061–73.

    Article  Google Scholar 

  22. F. Masoumi, M. Jahazi, D. Shahriari and J. Cormier: J. Alloys Compd, 2016,vol. 658, pp. 981-95.

    Article  Google Scholar 

  23. R. Giraud, Z. Hervier, J. Cormier, G. Saint-Martin, F. Hamon, X. Milhet, J. Mendez: Metall. Mater. Trans. A, 2013, vol. 44,pp. 131–46.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge funding by the German Federal Ministry for Economic Affairs and Energy (BMWi) under Grant number 03ET7047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Böttger.

Additional information

Manuscript submitted October 9, 2018.

Appendix A: Model Parameters and Assumptions for Brazing Simulation

Appendix A: Model Parameters and Assumptions for Brazing Simulation

See Tables A1, A2, and A3.

Table A1 Phase-Related Parameters Assumed in Brazing Simulations
Table A2 Phase Interaction Parameters Assumed in Brazing Simulations
Table A3 Nucleation Parameters Assumed in Brazing Simulations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böttger, B., Apel, M., Daniels, B. et al. Systematic Phase-Field Study on Microstructure Formation During Brazing of Mar-M247 with a Si-Based AMS4782 Filler. Metall Mater Trans A 50, 1732–1747 (2019). https://doi.org/10.1007/s11661-019-05113-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05113-3

Navigation