Skip to main content
Log in

Evolution of Microstructure and Carbon Distribution During Heat Treatments of a Dual-Phase Steel: Modeling and Atom-Probe Tomography Experiments

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The temporal evolution of microstructures and carbon distributions in a Fe-0.323C-1.231Mn-0.849Si (mol pct) dual-phase steel during heat treatments are simulated using a two-dimensional cellular automaton model. The model involves austenite nucleation, phase transformations controlled by ferrite (α)/austenite (γ) interface mobility and the local carbon concentration, and long-range carbon diffusion. It is also coupled with a solute drag model to account for the effect of substitutional elements on the interface migration. The results show that after holding at 800 °C for 300 seconds the transformed γ-volume fraction is lower than the paraequilibrium prediction. During subsequent cooling at 6 °C s−1, the γ → α transformation takes place after a stagnant stage; the carbon concentrations in both the α- and γ-phases increase and become non-uniform. When cooled below 450 °C, the γ-volume fraction is nearly unchanged. A small amount of carbon enriched martensite, transformed from the remaining γ-phase, exists in the room temperature microstructure. The simulated microstructures and carbon concentrations in martensite compare reasonably well with the experimental micrographs and atom-probe tomographic measurements. During tempering at 400 °C, martensite decomposes and the carbon concentration in the α-matrix increases. The simulation results are used to understand the mechanisms of yield strength variations after different heat treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] M. Gouné, F. Danoix, J. Ågren, Y. Bréchet, C.R. Hutchinson, M. Militzer, G. Purdy, S. van der Zwaag, and H. Zurob: Mater. Sci. Eng. R-Rep., 2015, vol. 92, pp. 1–38.

    Article  Google Scholar 

  2. [2] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 391–431.

    Article  CAS  Google Scholar 

  3. [3] G. Krauss: Steels: Processing, Structure, and Performance, Second Edition, ASM International, Materials Park, Ohio, 2015.

    Google Scholar 

  4. [4] J. Sietsma and S. van der Zwaag: Acta Mater., 2004, vol. 52, pp. 4143–52.

    Article  CAS  Google Scholar 

  5. [5] C. Bos and J. Sietsma: Scr. Mater., 2007, vol. 57, pp. 1085–8.

    Article  CAS  Google Scholar 

  6. [6] M.G. Mecozzi, C. Bos, and J. Sietsma: Acta Mater., 2015, vol. 88, pp. 302–13.

    Article  CAS  Google Scholar 

  7. [7] A. Hultgren: Trans. ASM., 1947, vol. 39, pp. 915–1005.

    Google Scholar 

  8. [8] G.R. Purdy and Y.J.M. Brechet: Acta Metall. Mater., 1995, vol. 43, pp. 3763–74.

    Article  CAS  Google Scholar 

  9. [9] H. Chen and S. van der Zwaag: Acta Mater., 2014, vol. 72, pp. 1–12.

    Article  Google Scholar 

  10. [10] Z.Q. Liu, G. Miyamoto, Z.G. Yang, and T. Furuhara: Acta Mater., 2013, vol.61, pp. 3120–9.

    Article  CAS  Google Scholar 

  11. [11] Y. Kubo, K. Hamada, and A. Urano: Ultramicroscopy, 2013, vol. 135, pp. 64–70.

    Article  CAS  Google Scholar 

  12. [12] T.F. Kelly and M.K. Miller: Rev. Sci. Instrum., 2007, vol. 78, p. 031101.

    Article  Google Scholar 

  13. [13] D.N. Seidman: Annu. Rev. Mater. Res., 2007, vol. 37, pp. 127–58.

    Article  CAS  Google Scholar 

  14. [14] Y.R. Wen, Y.P. Li, A. Hirata, Y. Zhang, T. Fujita, T. Furuhara, C.T. Liu, A. Chiba, and M.W. Chen: Acta Mater., 2013, vol. 61, pp. 7726–40.

    Article  CAS  Google Scholar 

  15. [15] Y. Toji, H. Matsuda, M. Herbig, P.-P. Choi, and D. Raabe: Acta Mater., 2014, vol. 65, pp. 215–28.

    Article  CAS  Google Scholar 

  16. [16] M.I. Hartshorne, D. Isheim, D.N. Seidman, and M.L. Taheri: Ultramicroscopy, 2014, vol. 147, pp. 25–32.

    Article  CAS  Google Scholar 

  17. [17] S.-I. Baik, L. Ma, Y.-J. Kim, B. Li, M. Liu, D. Isheim, B.I. Yakobson, P.M. Ajayan, and D.N. Seidman: Small, 2015, vol. 11, pp. 5968–74.

    Article  CAS  Google Scholar 

  18. [18] J. Rudnizki, B. Böttger, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2516–25.

    Article  Google Scholar 

  19. [19] C. Zheng and D. Raabe: Acta Mater., 2013, vol. 61, pp. 5504–17.

    Article  CAS  Google Scholar 

  20. [20] B. Su, Z. Han, and B. Liu: ISIJ Int., 2013, vol. 53, pp. 527–34.

    Article  CAS  Google Scholar 

  21. [21] B. Zhu, Y. Zhang, C. Wang, P.X. Liu, W.K. Liang, and J. Li: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3161–71.

    Article  Google Scholar 

  22. [22] G. Zhu, Y. Kang, C. Lu, and S. Li: Steel Res. Int., 2014, vol. 85, pp. 1035–46.

    Article  CAS  Google Scholar 

  23. [23] M. Militzer, M.G. Mecozzi, J. Sietsma, and S. van der Zwaag: Acta Mater., 2006, vol. 54, pp. 3961–72.

    Article  CAS  Google Scholar 

  24. [24] D.Z. Li, N.M. Xiao, Y.J. Lan, C.W. Zheng, and Y.Y. Li: Acta Mater., 2007, vol. 55, pp. 6234–49.

    Article  CAS  Google Scholar 

  25. [25] D.S. Svyetlichnyy and A.I. Mikhalyov: ISIJ Int., 2014, vol. 54, pp. 1386–95.

    Article  CAS  Google Scholar 

  26. [26] B. Su, Q. Ma, and Z. Han: Steel Res. Int., 2017, vol. 88, p. 1600490.

    Article  Google Scholar 

  27. [27] C. Bos, M.G. Mecozzi, and J. Sietsma: Comput. Mater. Sci., 2010, vol. 48, pp. 692–9.

    Article  CAS  Google Scholar 

  28. [28] B. Zhu and M. Militzer: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1073–84.

    Article  Google Scholar 

  29. [29] B. Zhu, H. Chen, and M. Militzer: Comput. Mater. Sci., 2015, vol. 108, pp. 333–41.

    Article  CAS  Google Scholar 

  30. [30] H. Chen, B. Zhu, and M. Militzer: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3873–81.

    Article  Google Scholar 

  31. [31] D. An, S. Pan, L. Huang, T. Dai, B. Krakauer, and M. Zhu: ISIJ Int., 2014, vol. 54, pp. 422–9.

    Article  CAS  Google Scholar 

  32. Image Tool Program. University of Texas Health Science Center, San Antonio, 2002. http://compdent.uthscsa.edu/dig/itdesc.html. Accessed 05 March 2018.

  33. [33] G. Krauss: Mater. Sci. Eng. A, 1999, vol. 273–275, pp. 40–57.

    Article  Google Scholar 

  34. [34] G.R. Speich and W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 1043–54.

    Article  CAS  Google Scholar 

  35. G.F. Vander Voort: Atlas of Time-Temperature Diagrams for Irons and Steels, ASM International, Materials Park, Ohio, 1991.

    Google Scholar 

  36. [36] O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437–44.

    CAS  Google Scholar 

  37. [37] P.H. Chang and A.G. Preban: Acta Metall., 1985, vol. 33, pp. 897–903.

    Article  CAS  Google Scholar 

  38. [38] A.H. Cottrell and B.A. Bilby: Proc. Phys. Soc. Sect. A, 1949, vol. 62, pp. 49–62.

    Article  Google Scholar 

  39. [39] E.O. Hall: Yield Point Phenomena in Metals and Alloys, Springer US, Boston, MA, 1970.

    Book  Google Scholar 

  40. [40] R. Rementeria, J.D. Poplawsky, M.M. Aranda, W. Guo, J.A. Jimenez, C. Garcia-Mateo, and F.G. Caballero: Acta Mater., 2017, vol. 125, pp. 359–68.

    Article  CAS  Google Scholar 

  41. [41] V.I. Savran, S.E. Offerman, and J. Sietsma: Metall. Mater. Trans. A, 2010, vol. 41, pp. 583–91.

    Article  CAS  Google Scholar 

  42. [42] G.S. Huppi, D.K. Matlock, and G. Krauss: Scr. Metall., 1980, vol. 14, pp. 1239–43.

    Article  CAS  Google Scholar 

  43. [43] G.P. Krielaart and S. Van Der Zwaag: Mater. Sci. Technol., 1998, vol. 14, pp. 10–8.

    Article  CAS  Google Scholar 

  44. [44] F. Fazeli and M. Militzer: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1395–405.

    Article  CAS  Google Scholar 

  45. [45] J.R. Bradley and H.I. Aaronson: Metall. Trans. A, 1977, vol. 8, pp. 317–22.

    Article  Google Scholar 

  46. [46] C. Capdevila, F.G. Caballero, and C.G. de Andrés: ISIJ Int., 2002, vol. 42, pp. 894–902.

    Article  CAS  Google Scholar 

  47. [47] L. Cheng, C.M. Brakman, B.M. Korevaar, and E.J. Mittemeijer: Metall. Trans. A, 1988, vol. 19, pp. 2415–26.

    Article  Google Scholar 

  48. [48] T. Waterschoot, K. Verbeken, and B.C. De Cooman: ISIJ Int., 2006, vol. 46, pp. 138–46.

    Article  CAS  Google Scholar 

  49. [49] D. Isheim, A.H. Hunter, X.J. Zhang, and D.N. Seidman: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3046–59.

    Article  Google Scholar 

  50. [50] D. Jain, D. Isheim, X.J. Zhang, G. Ghosh, and D.N. Seidman: Metall. Mater. Trans. A, 2017, vol. 48, pp. 3642–54.

    Article  Google Scholar 

  51. [51] K. Thompson, P.L. Flaitz, P. Ronsheim, D.J. Larson, and T.F. Kelly: Science, 2007, vol. 317, pp. 1370–74.

    Article  CAS  Google Scholar 

  52. [52] A. Kwiatkowski da Silva, G. Leyson, M. Kuzmina, D. Ponge, M. Herbig, S. Sandlöbes, B. Gault, J. Neugebauer, and D. Raabe: Acta Mater., 2017, vol. 124, pp. 305–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by A. O. Smith Corporation, USA, NSFC (Grant Nos. 51371051, 51501091), the Jiangsu Key Laboratory for Advanced Metallic Materials (BM2007204), and the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1628). Mr. Dong An is grateful for the financial support from the China Scholarship Council (CSC). APT was performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The LEAP tomograph at NUCAPT was purchased and upgraded with Grants from the NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, N00014-0910781, N00014-1712870) Programs. This work made use of the EPIC Facility of Northwestern University’s NUANCE Center. NUCAPT and NUANCE received support through the MRSEC Program (NSF DMR-1720139) at the Materials Research Center and the SHyNE Resource (NSF ECCS-1542205), NUCAPT from the Initiative for Sustainability and Energy (ISEN), at Northwestern University; NUANCE from the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfang Zhu.

Additional information

Manuscript submitted June 29, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, D., Baik, SI., Pan, S. et al. Evolution of Microstructure and Carbon Distribution During Heat Treatments of a Dual-Phase Steel: Modeling and Atom-Probe Tomography Experiments. Metall Mater Trans A 50, 436–450 (2019). https://doi.org/10.1007/s11661-018-4975-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4975-7

Navigation