Skip to main content
Log in

Solidification Microstructure, Segregation, and Shrinkage of Fe-Mn-C Twinning-Induced Plasticity Steel by Simulation and Experiment

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A 3D cellular automaton finite element model with full coupling of heat, flow, and solute transfer incorporating solidification grain nucleation and growth was developed for a multicomponent system. The predicted solidification process, shrinkage porosity, macrosegregation, grain orientation, and microstructure evolution of Fe-22Mn-0.7C twinning-induced plasticity (TWIP) steel match well with the experimental observation and measurement. Based on a new solute microsegregation model using the finite difference method, the thermophysical parameters including solid fraction, thermal conductivity, density, and enthalpy were predicted and compared with the results from thermodynamics and experiment. The effects of flow and solute transfer in the liquid phase on the solidification microstructure of Fe-22Mn-0.7C TWIP steel were compared numerically. Thermal convection decreases the temperature gradient in the liquid steel, leading to the enlargement of the equiaxed zone. Solute enrichment in front of the solid/liquid interface weakens the thermal convection, resulting in a little postponement of columnar-to-equiaxed transition (CET). The CET behavior of Fe-Mn-C TWIP steel during solidification was fully described and mathematically quantized by grain morphology statistics for the first time. A new methodology to figure out the CET location by linear regression of grain mean size with least-squares arithmetic was established, by which a composition design strategy for Fe-Mn-C TWIP steel according to solidification microstructure, matrix compactness, and homogeneity was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

CET:

Columnar-to-equiaxed transition

FEEDLEN:

Length of liquid steel feeding

HTC:

Heat-transfer coefficient

MACROFS:

Critical solid fraction for macroshrinkage

TWIP:

Twinning-induced plasticity

a :

Temperature coefficient in calculating thermal conductivity

a 2 :

Kinetics coefficients of dendrite tip growth

a 3 :

Kinetics coefficients of dendrite tip growth

a γ :

Parameter in calculating enthalpy

b :

Solute concentration coefficient in calculating thermal conductivity

c p :

Specific heat

c 0 :

Initial solute concentration

D :

Diffusion coefficient

f :

Solid fraction

f t v :

Solid fraction at step t for cell v

f t+δt v :

Solid fraction at step t + δt for cell v

δf v :

Solid fraction change or cell v

G :

Temperature gradient

H :

Enthalpy

δH :

Enthalpy change in micro-time-step

δH v :

Enthalpy change in micro-time-step for cell v

δH n :

Enthalpy change in micro-time-step for the element n

k :

Equilibrium solid/liquid partition coefficient

K :

Thermal conductivity

L :

Liquid phase

M :

Mass

m :

Slope of the liquidus line in phase diagram

n :

Number of the element containing the cell v

t :

Time-step

T :

Temperature

T L :

Liquidus

T S :

Solidus

T m :

Melting temperature for pure ferrite

T eutectic :

Eutectic temperature

T t v :

Temperature at step t for cell v

T tt v :

Temperature at step t + δt for cell v

δT v :

Temperature change or cell v

δt :

Micro-time-step

υ :

Dendrite growth rate

T :

Undercooling

H f :

Latent heat of per unit volume

v :

Cell number

ϕ vn :

Interpolation coefficient of element n and cell v

ρ :

Density

References

  1. O. Grässel and G. Frommeyer: Mater. Sci. Technol., 1998, vol. 14 (12), pp. 1213–17.

    Article  Google Scholar 

  2. O. Grässel, L. Krüger, G. Frommeyer et al.: Int. J. Plast., 2000, 16 (10), pp. 1391–1409.

    Article  Google Scholar 

  3. U. Brüx, G. Frommeyer, O. Grässel et al.: Steel Res., 2002, vol. 73 (13), pp. 294–98.

    Google Scholar 

  4. G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43 (3), pp. 438–46.

    Article  Google Scholar 

  5. S. Vercammen, B. Blanpain, B.C. De Cooman et al.: Acta Mater., 2004, vol. 52 (7), pp. 2005–12.

    Article  Google Scholar 

  6. S. Vercammen, B.C. De Cooman, and N. Akdut: Steel Res. Int., 2003, vol. 74 (6), pp. 370–75.

    Google Scholar 

  7. A.A. Saleh, E.V. Pereloma, and A.A. Gazder: Mater. Sci. Eng. A, 2011, vol. 528 (13–14), pp. 4537–49.

    Article  Google Scholar 

  8. D.B. Santos, A.A. Saleh, A.A. Gazder et al.: Mater. Sci. Eng. A, 2011, vol. 528 (13–14), 3545–55.

    Article  Google Scholar 

  9. Z. Mi, D. Tang, L. Yan et al.: J. Mater. Sci. Technol., 2005, vol. 21 (4), pp. 451–54.

    Article  Google Scholar 

  10. K. Phiu-on, W. Bleck, A. Schwedt et al.: Steel Res. Int., 2009, vol. 80 (1), pp. 29–38.

    Google Scholar 

  11. M. Eskandari, A. Zarei-Hanzaki, and A. Marandi: Mater. Des., 2012, vol. 39, pp. 279–84.

    Article  Google Scholar 

  12. M. Ha, W.S. Kim, H.K. Moon et al.: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1087–98.

    Article  Google Scholar 

  13. K.H. Spitzer, F. Ruppel, R. Viscorova et al. (2003) Steel Res. Int., 74 (11–12):724–31.

    Google Scholar 

  14. Y.N. Dastur and W.C. Leslie: Metall. Trans. A, 1981, vol. 12, pp. 749–59.

    Article  Google Scholar 

  15. B.K. Zuidema, D.K. Subramanyam, and W.C. Leslie: Metall. Trans. A, 1987, vol. 8A, pp. 1629–39.

    Article  Google Scholar 

  16. I. Karaman, H. Sehitoglu, K. Gall et al.: Acta Mater., 2000, vol. 48 (6), pp. 1345–59.

    Article  Google Scholar 

  17. C. Scott, S. Allain, M. Faral et al.: Rev. Métall., 2006, vol. 103, no. 6, pp. 293–302.

    Article  Google Scholar 

  18. Y.G. Kim, J.K. Han, and E.W. Lee: Metall. Mater. Trans. A, 1986, vol. 17A, pp. 2097–98.

    Article  Google Scholar 

  19. Y.G. Kim and C.Y. Lim: Metall. Mater. Trans. A, 1988, vol. 19A, pp. 1625–26.

    Article  Google Scholar 

  20. Y.G. Kim, Y.S. Park, and J.K. Han: Metall. Mater. Trans. A, 1985, vol. 16A, pp. 1689–93.

    Article  Google Scholar 

  21. J.M. Han and Y.G. Kim: J. Mater. Sci. Lett., 1989, vol. 8 (5), pp. 599–601.

    Article  Google Scholar 

  22. K.H. Hwang, W.S. Yang, T.B. Wu et al.: Acta Metall. Mater., 1991, vol. 39 (5), pp. 825–31.

    Article  Google Scholar 

  23. K.H. Hwang, C.M. Wan, and J.G. Byrne: Mater. Sci. Eng. A, 1991, vol. 132, pp. 161–69.

    Article  Google Scholar 

  24. T. Shun, C.M. Wan, and J.G. Byrne: Acta Metall. Mater., 1992, vol. 40 (12), pp. 3407–12.

    Article  Google Scholar 

  25. O. Bouaziz and N. Guelton: Mater. Sci. Eng. A, 2001, vol. 319, pp. 246–49.

    Article  Google Scholar 

  26. A. Dumay, J.P. Chateau, S. Allain et al.: Mater. Sci. Eng. A, 2008, vol. 483, pp. 184–87.

    Article  Google Scholar 

  27. S. Allain, J.P. Chateau and O. Bouaziz: Mater. Sci. Eng. A, 2004, vol. 387, pp. 143–47.

    Article  Google Scholar 

  28. S. Allain, J.P. Chateau, D. Dahmoun et al.: Mater. Sci. Eng. A, 2004, vol. 387, pp. 272–76.

    Article  Google Scholar 

  29. L. Bracke, K. Verbeken, L. Kestens et al.: Acta Mater., 2009, vol. 57 (5), pp. 1512–24.

    Article  Google Scholar 

  30. L. Bracke, L. Kestens, and J. Penning: Scripta Mater., 2009, vol. 61 (2), pp. 220–22.

    Article  Google Scholar 

  31. R. Ueji, N. Tsuchida, D. Terada et al.: Scripta Mater., 2008, vol. 59 (9), pp. 963–66.

    Article  Google Scholar 

  32. J.D. Yoo, S.W. Hwang, and K.T. Park: Mater. Sci. Eng. A, 2009, vol. 508 (1), pp. 234–40.

    Article  Google Scholar 

  33. J.E. Jin and Y.K. Lee: Mater. Sci. Eng. A, 2009, vol. 527 (1), pp. 157–61.

    Article  Google Scholar 

  34. M. Koyama, T. Sawaguchi, and K. Tsuzaki: ISIJ Int., 2012, vol. 52 (1), pp. 161–63.

    Article  Google Scholar 

  35. M. Koyama, T. Sawaguchi, and K. Tsuzaki: ISIJ Int., 2013, vol. 53 (2), pp. 323–29.

    Article  Google Scholar 

  36. S.C. Mittal, R.C. Prasad, and M.B. Deshmukh: ISIJ Int., 1995, vol. 35 (3), pp. 302–08.

    Article  Google Scholar 

  37. R.T. Van Tol, L. Zhao, H. Schut et al.: Mater. Sci. Technol., 2012, vol. 28 (3), pp. 348–53.

    Article  Google Scholar 

  38. K.H. So, J.S. Kim, Y.S. Chun et al.: ISIJ Int., 2009, vol. 49 (12), pp. 1952–59.

    Article  Google Scholar 

  39. M. Koyama, E. Akiyama, and K. Tsuzaki: Corros. Sci., 2012, vol. 54, pp. 1–4.

    Article  Google Scholar 

  40. M. Koyama, E. Akiyama, T. Sawaguchi et al.: Scripta Mater., 2012, vol. 66 (7), pp. 459–62.

    Article  Google Scholar 

  41. M. Koyama, E. Akiyama, and K. Tsuzaki: Scripta Mater., 2012, vol. 66 (11), pp. 947–50.

    Article  Google Scholar 

  42. S.H. Wang, Z.Y. Liu, W.N. Zhang et al.: ISIJ Int., 2009, vol. 49 (9), pp. 1340–46.

    Article  Google Scholar 

  43. M. Daamen, B. Wietbrock, S. Richter et al.: Steel Res. Int., 2011, vol. 82 (1), pp. 70–75.

    Article  Google Scholar 

  44. Y. Saito, G. Goldbeck-Wood, and H. Müller-Krumbhaar: Phys. Rev. A, 1988, vol. 38 (4), pp. 2148–53.

    Article  Google Scholar 

  45. D. Juric and G. Tryggvason: J. Comput. Phys., 1996, vol. 123 (1), pp. 127–48.

    Article  Google Scholar 

  46. G. Caginalp and P. Fife: Phys. Rev. B, 1986, vol. 33 (11), pp. 7792–94.

    Article  Google Scholar 

  47. R. Kobayashi: Phys. D, 1993, vol. 63 (3), pp. 410–23.

    Article  Google Scholar 

  48. J.A. Spittle and S.G. Brown: Acta Metall., 1989, vol. 37 (7), pp. 1803–10.

    Article  Google Scholar 

  49. P.P. Zhu and R.W. Smith: Acta Metall., 1992, vol. 40 (4), pp. 683–92.

    Article  Google Scholar 

  50. C.A. Gandin and M. Rappaz: Acta Metall., 1994, vol. 42 (7), pp. 2233–46.

    Article  Google Scholar 

  51. C.A. Gandin, J.L. Desbiolles, M. Rappaz et al.: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3153–65.

    Article  Google Scholar 

  52. L. Nastac and D.M. Stefanescu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 4061–74.

    Article  Google Scholar 

  53. L. Nastac and D.M. Stefanescu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 4075–83.

    Article  Google Scholar 

  54. M. Yamazaki, Y. Natsume, H. Harada et al.: ISIJ Int., 2006, vol. 46 (6), pp. 903–08.

    Article  Google Scholar 

  55. J. Wang, F. Wang, C. Li et al.: ISIJ Int., 2010, vol. 50 (2), pp. 222–30.

    Article  Google Scholar 

  56. C. Jing, Z. Xu, Y. Wang et al.: China Foundry, 2012, vol. 9 (1), pp. 53–59.

    Google Scholar 

  57. Z. Hou, F. Jiang, and G. Cheng: ISIJ Int., 2012, vol. 52 (7), pp. 1301–09.

    Article  Google Scholar 

  58. P. Lan, L. Song, C. Du et al.: Mater. Sci. Technol., 2014, vol. 30 (11), pp. 1297–1304.

    Article  Google Scholar 

  59. D. Djurovic, B. Hallstedt, J. von Appen et al.: Calphad, 2011, vol. 35 (4), pp. 479–91.

    Article  Google Scholar 

  60. W. Huang: Metall. Trans. A, 1990, vol. 21A, pp. 2115–23.

    Article  Google Scholar 

  61. H. Qian, P. Lan, J. Zhang et al.: Special Steel, 2010, vol. 31 (2), pp. 25–28 (in Chinese)

    Google Scholar 

  62. G. Engstrom, H. Fredriksson, and B. Rogberg: Scand. J. Metall., 1983, vol. 12 (1), pp. 3–12.

    Google Scholar 

  63. K. Harste: Ph.D. Dissertation, Technical University of Clausthal, Clausthal-Zellerfeld, 1989.

  64. A. Jablonka, K. Harste, and K. Schwerdtfeger: Steel Res., 1991, vol. 62 (1), pp. 24–33.

    Google Scholar 

  65. H. Mizukami, A. Yamanaka, and T. Watanabe: ISIJ Int., 2002, vol. 42 (4), pp. 375–84.

    Article  Google Scholar 

  66. P. Lan and J. Zhang: Steel Res. Int., 2016, vol. 87 (2), pp. 250–61.

    Article  Google Scholar 

  67. L. Yang: Master Thesis, University of Science and Technology Beijing, Beijing, 2012.

  68. J. Yang, Y.N. Wang, X.M. Ruan et al.: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1365–75.

    Article  Google Scholar 

  69. P. Lan and J. Zhang: Ironmaking and Steelmaking, 2014, vol. 41 (8), pp. 598–606.

    Article  Google Scholar 

  70. P. Lan, H. Sun, Y. Li, et al. (2014) J. Univ. Sci. Technol. Beijing, 36(3):315–22

    Google Scholar 

  71. J. Miettinen: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 365–79.

    Article  Google Scholar 

  72. I. Hitoshi, N. Yukinobu, and O. Kenichi: ISIJ Int., 2008, vol. 48 (12), pp. 1728–33.

    Article  Google Scholar 

  73. C. Jing, X. Wang, M. Jiang et al.: Steel Res Int., 2011, vol. 82 (10), pp. 1173–79.

    Article  Google Scholar 

  74. L. Bai, H. Liu, Y. Zhang et al. (2011) J. Univ. Sci. Technol. Beijing 33(9):1091–98

    Google Scholar 

  75. J. Wang, F. Wang, Y. Zhao et al.: Int. J. Min. Metall. Mater., 2009, vol. 16 (6), pp. 640–45.

    Google Scholar 

  76. M.C. Schneider and C. Beckermann: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2373–88.

    Article  Google Scholar 

  77. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 685–705.

    Article  Google Scholar 

  78. M. Rappaz and C.A. Gandin: Acta Metall., 1993, vol. 41(2), pp. 345–60.

    Article  Google Scholar 

  79. C. Pequet, M. Rappaz, and M. Gremaud: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2095–2106.

    Article  Google Scholar 

  80. ProCAST User Manual, ESI group. The virtual try-out space company, 2011.

  81. E. Scheil: Z. Metallkd., 1942, vol. 34 (3), pp. 70–72.

    Google Scholar 

  82. P. Lan, Y. Li, J. Zhang et al.: EPD Congress TMS2012, John Wiley & Sons, Inc., New York, NY, 2012, pp. 71–78.

    Book  Google Scholar 

  83. P. Lan and J. Zhang: Mater. Des., 2014, vol. 53, pp. 822–29.

    Article  Google Scholar 

  84. P. Lan and J. Zhang: Mater. Des., 2014, vol. 54, pp. 112–24.

    Article  Google Scholar 

  85. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65 (1), pp. 75–83.

    Article  Google Scholar 

  86. S.C. Flood and J.D. Hunt: J Cryst. Growth, 1987, vol. 82 (3), pp. 552–60.

    Article  Google Scholar 

  87. Z. Hou, G. Cheng, F. Jiang et al.: ISIJ Int., 2013, vol. 53 (4), pp. 655–64.

    Article  Google Scholar 

  88. C. Wang, H. Gao, Y. Dai et al.: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1616–20.

    Article  Google Scholar 

  89. S. Tsuchiya, M. Ohno, and K. Matsuura: Acta Mater., 2012, vol. 60 (6), pp. 2927–38.

    Article  Google Scholar 

  90. M. Ohno, M. Maruyama, and K. Matsuura: Metall. Mater. Trans. A, 2015, vol. 46 (11), pp. 5240–47.

    Article  Google Scholar 

  91. S.K. Choudhary and A. Ghosh: ISIJ Int., 1994, vol. 34 (4), pp. 338–45.

    Article  Google Scholar 

  92. M.R. Bridge and G.D. Rogers: Metall. Trans. B, 1984, vol. 15B, pp. 581–89.

    Article  Google Scholar 

  93. K.A. Jackson, J.D. Hunt, D.R. Uhlmann et al.: Trans. AIME, 1966, vol. 236 (2), pp. 149–58

    Google Scholar 

  94. Q. Han, H. Hu (1989) Acta Metall. Sinica Engl. Ed. B 2 (2):94–98.

    Google Scholar 

  95. H. Xu, L.D. Xu, S.J. Zhang et al.: Scripta Mater., 2006, vol. 54 (12), pp. 2191–96.

    Article  Google Scholar 

  96. Y. Shan, X. Luo, X. Hu et al.: J. Mater. Sci. Technol., 2011, vol. 27 (4), pp. 352–58.

    Article  Google Scholar 

  97. M. El-Bealy and B.G. Thomas: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 689–93.

    Article  Google Scholar 

  98. H. Jacobi and K. Schwerdtfeger: Metall. Trans. A, 1976, vol. 7A, pp. 811–20.

    Article  Google Scholar 

  99. H. Mizukami, K. Hayashi, M. Numata et al.: ISIJ Int., 2012, vol. 52 (12), pp. 2235–44.

    Article  Google Scholar 

  100. S. Tsuchiya, M. Ohno, and K. Matsuura: Acta Mater., 2012, vol. 60 (6), pp. 2927–38.

    Article  Google Scholar 

  101. H. Suito, H. Ohta, and S. Morioka: ISIJ Int., 2006, vol. 46 (6), pp. 840–46.

    Article  Google Scholar 

  102. J.D. Hunt: Solidification and Casting of Metals, Metals Society, London, 1979.

    Google Scholar 

  103. W. Kurz and D.J. Fisher: Acta Metall., 1981, vol. 29 (1), pp. 11–20.

    Article  Google Scholar 

  104. S. Ilie, H. Presslinger, P. Reisinger et al.: Steel Res. Int., 2007, vol. 78 (4), pp. 327–32.

    Google Scholar 

Download references

Acknowledgments

This research was carried out in the School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing. The authors gratefully acknowledge the financial support of the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-15-066A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Lan.

Additional information

Manuscript submitted July 14, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, P., Tang, H. & Zhang, J. Solidification Microstructure, Segregation, and Shrinkage of Fe-Mn-C Twinning-Induced Plasticity Steel by Simulation and Experiment. Metall Mater Trans A 47, 2964–2984 (2016). https://doi.org/10.1007/s11661-016-3445-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3445-3

Keywords

Navigation