Skip to main content
Log in

Phase-Field Modeling for Intercritical Annealing of a Dual-Phase Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A phase-field model has been developed to describe microstructure evolution during intercritical annealing of a commercial DP600 dual-phase steel. The simulations emphasize the interaction between ferrite recrystallization and austenite formation from a cold-rolled pearlite/ferrite microstructure at high heating rates. The austenite-ferrite transformations are assumed to occur under conditions where only carbon partitions between the phases by long-range diffusion. A solute drag model has been integrated with the phase-field model to describe the effect of substitutional alloying elements on the migration of the ferrite/austenite interface. Experimental results including recrystallization and transformation kinetics as well as austenite morphology have been successfully described by carefully adjusting both the austenite nucleation scenario and the interface mobilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C. Bos, M.G. Mecozzi, D.N. Hanlon, M.P. Aarnts, and J. Sietsma: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3602–10.

    Article  Google Scholar 

  2. D. Liu, F. Fazeli, and M. Militzer: ISIJ Int., 2007, vol. 47, pp. 1789–98.

    Article  Google Scholar 

  3. D. Bombac, M.J. Peet, S. Zenitani, S. Kimura, T. Kurimura, and H.K.D.H. Bhadeshia: Model. Simul. Mater. Sci. Eng., 2014, vol. 22, p. 045005(14).

  4. C. Bos, M.G. Mecozzi, and J. Sietsma: Comput. Mater. Sci., 2010, vol. 48, pp. 692–99.

    Article  Google Scholar 

  5. J. Rudnizki, B. Böttger, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2516–25.

    Article  Google Scholar 

  6. M. Kulakov, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3564–76.

    Article  Google Scholar 

  7. H. Azizi-Alizamini, M. Militzer, and W.J. Poole: Metall. Mater. Trans. A, 2010, vol. 42A, pp. 1544–57.

    Google Scholar 

  8. J. Huang, W. Poole, and M. Militzer: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3363–75.

    Article  Google Scholar 

  9. C. Zheng and D. Raabe: Acta Mater., 2013, vol. 61, pp. 5504–17.

    Article  Google Scholar 

  10. M. Kulakov: Ph.D. Thesis, University of British Columbia, Vancouver, Canada, 2013.

  11. I. Steinbach and F. Pezzolla: Phys. Nonlinear Phenom.., 1999, vol. 134 (4), pp. 385–93.

  12. J. Eiken, B. Böttger, and I. Steinbach: Phys. Rev. E, 2006, vol. 73 (6), p. 066122(9).

  13. B. Zhu and M. Militzer: Model. Simul. Mater. Sci. Eng., 2012, vol. 20 (8), p. 085011(17).

  14. A. Godfrey, N. Hansen, and D. Juul Jensen: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2329–39.

    Article  Google Scholar 

  15. M. Kulakov: The University of British Columbia, Vancouver, Canada, Private Communication, 2014.

  16. D. Raabe and L. Hantcherli: Comput. Mater. Sci., 2005, vol. 34, no. 4, pp. 299–313.

    Article  Google Scholar 

  17. D. Raabe and R.C. Becker: Model. Simul. Mater. Sci. Eng., 2000, vol. 8, no. 4, p. 445.

    Article  Google Scholar 

  18. D. Raabe: Annu. Rev. Mater. Res., 2002, vol. 32, no. 1, pp. 53–76.

    Article  Google Scholar 

  19. M. Sánchez-Araiza, S. Godet, P.J. Jacques, and J.J. Jonas: Acta Mater., 2006, vol. 54, no. 11, pp. 3085–93.

    Article  Google Scholar 

  20. V. Savran, S. Offerman, and J. Sietsma: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 583–91.

    Article  Google Scholar 

  21. H.I. Aaronson, W.F. Lange III, and G.R. Purdy: Scripta Mater., 2004, vol. 51, no. 9, pp. 931–35.

    Article  Google Scholar 

  22. I. Lischewski and G. Gottstein: Acta Mater., 2011, vol. 59, no. 4, pp. 1530–41.

    Article  Google Scholar 

  23. J. Warren, T. Pusztai, L. Környei, and L. Gránásy: Phys. Rev. B, 2009, vol. 79, no. 1, p. 014204.

    Article  Google Scholar 

  24. L. Gránásy, T. Pusztai, D. Saylor, and J. Warren: Phys. Rev. Lett., 2007, vol. 98, no. 3, p. 035703.

    Article  Google Scholar 

  25. M. Militzer: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, no. 3, pp. 106–15.

    Article  Google Scholar 

  26. M. Hillert and B. Sundman: Acta Metall., 1976, vol. 24, no. 8, pp. 731–43.

    Article  Google Scholar 

  27. J.W. Cahn: Acta Metall., 1962, vol. 10, no. 9, pp. 789–98.

    Article  Google Scholar 

  28. G.R. Purdy and Y.J.M. Brechet: Acta Metall. Mater., 1995, vol. 43, no. 10, pp. 3763–74.

    Article  Google Scholar 

  29. T. Jia and M. Militzer: ISIJ Int., 2012, vol. 52, no. 4, pp. 644–49.

    Article  Google Scholar 

  30. H. Chen, K. Zhu, L. Zhao, and S. van der Zwaag: Acta Mater., 2013, vol. 61, no. 14, pp. 5458–68.

    Article  Google Scholar 

  31. R.G. Thiessen, J. Sietsma, T.A. Palmer, J.W. Elmer, and I.M. Richardson: Acta Mater., 2007, vol. 55, no. 2, pp. 601–14.

    Article  Google Scholar 

  32. G. Speich, V. Demarest, and R. Miller: Metall. Trans. A, 1981, vol. 12A, pp. 1419–28.

    Article  Google Scholar 

  33. W. Song, P.-P. Choi, G. Inden, U. Prahl, D. Raabe, and W. Bleck: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 595–606.

    Article  Google Scholar 

  34. Y.J. Lan, N.M. Xiao, D.Z. Li, and Y.Y. Li: Acta Mater., 2005, vol. 53, no. 4, pp. 991–1003.

    Article  Google Scholar 

  35. D. Yang, E. Brown, D. Matlock, and G. Krauss: Metall. Trans. A, 1985, vol. 16A, pp. 1385–92.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) and ArcelorMittal Dofasco Inc. for their financial support. They thank W.J. Poole and M. Kulakov for many stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benqiang Zhu.

Additional information

Manuscript submitted August 14, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Militzer, M. Phase-Field Modeling for Intercritical Annealing of a Dual-Phase Steel. Metall Mater Trans A 46, 1073–1084 (2015). https://doi.org/10.1007/s11661-014-2698-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2698-y

Keywords

Navigation