Skip to main content
Log in

Asymmetric Cracking in Mar-M247 Alloy Builds During Electron Beam Powder Bed Fusion Additive Manufacturing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the electron beam powder bed fusion (EB-PBF) process, a substantial number of high-gamma prime Ni-based superalloys are considered as non-printable due to a high propensity to form cracks. In this research, we focused on computational modeling framework to predict solidification-related cracking phenomena in EB-PBF processes. The cracking analysis was performed on cylindrical overhang structures where the cracks are observed only on one side of the part. Comprehensive microstructural characterization correlated the cracking tendency to low-melting point liquid-film formation along columnar grain boundaries with high misorientation angles due to partitioning of alloying elements. Uncoupled numerical thermal and mechanical models were used to rationalize the relationship between process parameters, build geometry, and cracking. The simulations showed asymmetric temperature distributions and associated asymmetric tensile thermal stresses over a cross section due to differences in section modulus and periodic changes in beam scanning directions. The results provide a potential pathway based on spatially varying beam scanning strategies to reduce the cracking tendency during additive manufacturing of complex geometries on the overhang structure in high-gamma prime nickel-based superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Identification of the powder producers should not be considered as the endorsement.

References

  1. M. Seifi, A. Salem, J. Beuth, O. Harrysson and J.J. Lewandowski: JOM, 2016, vol. 68, pp. 747-764.

    Article  Google Scholar 

  2. N.J. Harrison, I. Todd and K. Mumtaz: Acta Mater., 2015, vol. 94, pp. 59-68.

    Article  Google Scholar 

  3. M. Ramsperger, R.F. Singer and C. Körner: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1469-1480.

    Article  Google Scholar 

  4. R. Baldan, P.R.S.A. e Silva, C.A. Nunes and G.C. Coelho: J. Mater. Eng. Perform., 2013, vol. 22, pp. 2337-2342.

    Article  Google Scholar 

  5. A. Basak and S. Das: J. Alloys Compd., 2017, vol. 705, pp. 806-816.

    Article  Google Scholar 

  6. L.N. Carter, M.M. Attallah and R.C. Reed: in Superalloys 2012, Roger C. Reed Eric S. Huron, Mark C. Hardy, Michael J. Mills, Rick E. Montero, Pedro D. Portella and Jack Telesman, eds., The Minerals, Metals & Materials Society, 2012, pp. 577–86.

  7. E. Chauvet, P. Kontis, E.A. Jägle, B. Gault, D. Raabe, J.-J. Blandin, R. Dendievel, B. Vayre, S. Abed and G. Martin: Acta Mater., 2018, vol. 142, pp. 82-94.

    Article  Google Scholar 

  8. L.N. Carter, C. Martin, P.J. Withers and M.M. Attallah: J. Alloys Compd., 2014, vol. 615, pp. 338-347.

    Article  Google Scholar 

  9. D. Gu, W. Meiners, K. Wissenbach and R. Poprawe: Int. Mater. Rev., 2012, vol. 57, pp. 133-164.

    Article  Google Scholar 

  10. J.C. Lippold, S.D. Kiser and J.N. DuPont: Welding Metallurgy and Weldability of Nickel-Base Alloys. Wiley, Hoboken, 2011.

    Google Scholar 

  11. S. Kou: Welding Metallurgy. Wiley, Hoboken 2003.

    Google Scholar 

  12. J. Zhang: In Superalloys 2004, T.M. Pollock K.A. Green, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S, Walston, eds., The Minerals, Metals & Materials Society, 2004, pp. 727–33.

  13. J.-W. Park, J. Vitek, S. Babu and S. David: Sci. Technol. Weld. Joining, 2004, vol. 9, pp. 472-482.

    Article  Google Scholar 

  14. C. Cross: On the Origin of Weld Solidification Cracking, In Hot Cracking Phenomena in Welds. Springer, Berlin, Heidelberg, 2005, pp. 3-18.

    Book  Google Scholar 

  15. W. Savage and A. Aronson: Weld J, 1966, vol. 45, pp. 85s-89s.

    Google Scholar 

  16. S. Kou: JOM, 2003, vol. 55, pp. 37-42.

    Article  Google Scholar 

  17. N. Wang, S. Mokadem, M. Rappaz and W. Kurz: Acta Mater., 2004, vol. 52, pp. 3173-3182.

    Article  Google Scholar 

  18. T.P. Mitchell, R. Sanderson and B.G. Dance: Mater. Sci. Forum, 2007, vol. 539, pp. 3985-3990.

    Article  Google Scholar 

  19. L. Ma and H. Bin: Int. J. Adv. Manuf. Technol., 2007, vol. 34, pp. 898-903.

    Article  Google Scholar 

  20. S. Catchpole-Smith, N. Aboulkhair, L. Parry, C. Tuck, I. Ashcroft and A. Clare: Addit. Manuf., 2017, vol. 15, pp. 113-122.

    Article  Google Scholar 

  21. B. Cheng, S. Shrestha and K. Chou: Addit. Manuf., 2016, vol. 12, pp. 240-251.

    Article  Google Scholar 

  22. M.F. Zaeh and M. Kahnert: Prod. Eng., 2009, vol. 3, pp. 217-224.

    Article  Google Scholar 

  23. M.M. Kirka, Y. Lee, D.A. Greeley, A. Okello, M.J. Goin, M.T. Pearce and R.R. Dehoff: JOM, 2017, vol. 69, pp. 523-531.

    Article  Google Scholar 

  24. Y.S. Lee, M.M. Kirka, N. Raghavan and R.R. Dehoff: in Solid Free. Fabr.Symp., University of Texas at Austin, 2017, pp. 1005–17.

  25. A.E. Patterson, S.L. Messimer and P.A. Farrington: Technologies, 2017, vol. 5, p. 15.

    Article  Google Scholar 

  26. M. Thomas, G.J. Baxter and I. Todd: Acta Mater., 2016, vol. 108, pp. 26-35.

    Article  Google Scholar 

  27. P. Delroisse, P.J. Jacques, E. Maire, O. Rigo and A. Simar: Scr. Mater., 2017, vol. 141, pp. 32-35.

    Article  Google Scholar 

  28. N. Sridharan, M. Norfolk and S.S. Babu: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2517-2528.

    Article  Google Scholar 

  29. N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson and S.S. Babu: Acta Mater., 2016, vol. 112, pp. 303-314.

    Article  Google Scholar 

  30. Y. Lee and W. Zhang: Addit. Manuf., 2016, vol. 12, pp. 178-188.

    Article  Google Scholar 

  31. W. Yan, W. Ge, Y. Qian, S. Lin, B. Zhou, W.K. Liu, F. Lin and G.J. Wagner: Acta Materialia, 2017, vol. 134, pp. 324-333.

    Article  Google Scholar 

  32. S.A. Khairallah, A.T. Anderson, A. Rubenchik and W.E. King: Acta Mater., 2016, vol. 108, pp. 36-45.

    Article  Google Scholar 

  33. C. Körner, E. Attar and P. Heinl: J. Mater. Process. Technol., 2011, vol. 211, pp. 978-987.

    Article  Google Scholar 

  34. A. Klassen, V.E. Forster, V. Juechter and C. Körner: J. Mater. Process. Technol., 2017, vol. 247, pp. 280-288.

    Article  Google Scholar 

  35. D. Riedlbauer, T. Scharowsky, R.F. Singer, P. Steinmann, C. Körner and J. Mergheim: Int. J. Adv. Manuf. Technol., 2017, vol. 88, pp. 1309-1317.

    Article  Google Scholar 

  36. J.B. M. S. Alnaes, J. Hake, A. Johansson, A.L. B. Kehlet, C. Richardson, J. Ring, M. E. Rognes, G.N. Wells: The FEniCS Project Version 1.5, Archive of Numerical Software, 2015, vol. 3, pp. 9–23.

  37. A. Logg and G.N. Wells: ACM Trans. Math. Softw., 2010, vol. 37, p. 20.

    Article  Google Scholar 

  38. B.E. Abali: Computational Reality. 1 ed. Springer, Singapore, 2017.

    Book  Google Scholar 

  39. K. Abderrazak, S. Bannour, H. Mhiri, G. Lepalec and M. Autric: Comput. Mater. Sci, 2009, vol. 44, pp. 858-866.

    Article  Google Scholar 

  40. http://www.thermocalc.com/.

  41. N. Saunders, U. Guo, X. Li, A. Miodownik and J.-P. Schillé: JOM, 2003, vol. 55, pp. 60-65.

    Article  Google Scholar 

  42. ABAQUS Documentation, Dassault Systémes Simulia Corp, Providence, RI, USA, 2011.

  43. O. Muránsky, C.J. Hamelin, M.C. Smith, P.J. Bendeich and L. Edwards: Comput. Mater. Sci, 2012, vol. 54, pp. 125-134.

    Article  Google Scholar 

  44. M. Smith and A. Smith: Int. J. Press. Vessels Pip., 2009, vol. 86, pp. 79-95.

    Article  Google Scholar 

  45. L. Wang, N. Wang and N. Provatas: Acta Mater., 2017, vol. 126, pp. 302-312.

    Article  Google Scholar 

  46. Z. Feng, S. David, T. Zacharia and C. Tsai: Sci. Technol. Weld. Joining, 1997, vol. 2, pp. 11-19.

    Article  Google Scholar 

Download references

Acknowledgments

The research was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office under contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors thank Dr. Alex Plotkowski of ORNL for constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Lee.

Additional information

Notice of Copyright. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Manuscript submitted February 7, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.S., Kirka, M.M., Kim, S. et al. Asymmetric Cracking in Mar-M247 Alloy Builds During Electron Beam Powder Bed Fusion Additive Manufacturing. Metall Mater Trans A 49, 5065–5079 (2018). https://doi.org/10.1007/s11661-018-4788-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4788-8

Navigation