Skip to main content
Log in

Optimization of VPSC Model Parameters for Two-Phase Titanium Alloys: Flow Stress Vs Orientation Distribution Function Metrics

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The ability to predict the evolution of crystallographic texture during hot work of titanium alloys in the \(\alpha + \beta \) temperature regime is greatly significant to numerous engineering disciplines; however, research efforts are complicated by the rapid changes in phase volume fractions and flow stresses with temperature in addition to topological considerations. The viscoplastic self-consistent (VPSC) polycrystal plasticity model is employed to simulate deformation in the two phase field. Newly developed parameter selection schemes utilizing automated optimization based on two different error metrics are considered. In the first optimization scheme, which is commonly used in the literature, the VPSC parameters are selected based on the quality of fit between experiment and simulated flow curves at six hot-working temperatures. Under the second newly developed scheme, parameters are selected to minimize the difference between the simulated and experimentally measured \(\alpha \) textures after accounting for the \(\beta \rightarrow \alpha \) transformation upon cooling. It is demonstrated that both methods result in good qualitative matches for the experimental \(\alpha \) phase texture, but texture-based optimization results in a substantially better quantitative orientation distribution function match.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Leyens and M. Peters (eds.): Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Weinheim, 2003.

  2. F. Froes (ed.): Titanium: Physical Metallurgy, Processing, and Applications, ASM International, Materials Park, OH, 2015.

  3. G. Lütjering and J. C. Williams: Titanium, Springer-Verlag, Heidelberg, 2013.

    Google Scholar 

  4. S. L. Semiatin, V. Seetharaman, and I. Weiss: JOM, 1997, vol. 49(6): 33–39.

    Article  Google Scholar 

  5. S. Ankem, H. Margolin, C. A. Greene, B. W. Neuberger, and P. G. Oberson: Progress in Materials Scince, 2006, vol. 51: 632–709.

    Article  Google Scholar 

  6. X. Sun, K. Choi, A. Soulami, W. Liu, and M. Khaleel: Materials Science and Engineering: A, 2009, vol. 526(1-2): 140–149.

    Article  Google Scholar 

  7. A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck: Materials Science and Engineering: A, 2013, vol. 560: 129–139.

    Article  Google Scholar 

  8. T. Iung and M. Grange: Materials Science and Engineering: A, 1995, vol. 201(1-2): L8–L11.

    Article  Google Scholar 

  9. L. Durand, M. Massaoudi, M. Cabié, and A. Ponchet: Materials & Design, 2008, vol. 29(8): 1609–1615.

    Article  Google Scholar 

  10. C. Greene and S. Ankem: Materials Science and Engineering: A, 1995, vol. 202(1-2): 103–111.

    Article  Google Scholar 

  11. H. Fischmeister and B. Karlsson: Zeitschrift fur Metallkunde, 1977, vol. 68: 311–327.

    Google Scholar 

  12. Z. Fan, P. Tsakiropoulos, and A. Miodownik: Journal of Materials Science, 1994, vol. 29(1): 141–150.

    Article  Google Scholar 

  13. Z. Fan and A. Miodownik: Acta Metallurgica et Meterialia, 1993, vol. 41(8): 2403–2413.

    Article  Google Scholar 

  14. R. A. Lebensohn and C. Tomé: Acta Metallurgica et Materialia, 1993, vol. 41(9): 2611–2624.

    Article  Google Scholar 

  15. C. N. Tomé: Modelling and Simulation in Materials Science and Engineering, 1999, vol. 7(5): 723.

    Article  Google Scholar 

  16. J. Carpenter, S. Vogel, J. LeDonne, D. Hammon, I. Beyerlein, and N. Mara: Acta Materialia, 2012, vol. 60(4): 1576–1586.

    Article  Google Scholar 

  17. R. Lebensohn and G. Canova: Acta Metallurgica, 1997, vol. 45(9): 3687–3694.

    Google Scholar 

  18. N. Jia, R. Lin Peng, Y. Wang, S. Johansson, and P. Liaw: Acta Materialia, 2008, vol. 56(4): 782–793.

    Article  Google Scholar 

  19. S. R. Agnew and Ö. Duygulu: International Journal of Plasticity, 2005, vol. 21(6): 1161–1193.

    Article  Google Scholar 

  20. M. Knezevic, I. J. Beyerlein, D. W. Brown, T. A. Sisneros, and C. N. Tomé: International Journal of Plasticity, 2013, vol. 49: 185–198.

    Article  Google Scholar 

  21. C. Tomé, R. A. Lebensohn, and U. Kocks: Acta Metallurgica et Materialia, 1991, vol. 39(11): 2667–2680.

    Article  Google Scholar 

  22. V. M. Miller, T. D. Berman, I. J. Beyerlein, J. W. Jones, and T. M. Pollock: Materials Science and Engineering A, 2016, vol. Submitted.

    Google Scholar 

  23. J. W. Signorelli, R. E. Logé, Y. B. Chastel, and R. A. Lebensohn: Modelling and Simulation in Materials Science and Engineering, 2000, vol. 8(2): 193.

    Article  Google Scholar 

  24. G. Sargent, A. Zane, P. Fagin, A. Ghosh, and S. Semiatin: Metallurgical and Materials Transactions A, 2008, vol. 39(12): 2949–2964.

    Article  Google Scholar 

  25. T. Altan: in Metal Forming: Fundamentals and Applications, ASM International, Materials Park, OH, 1983.

    Google Scholar 

  26. F. Bachmann, R. Hielscher, and H. Schaeben: Solid State Phenomena, 2010, vol. 160: 63–68.

    Article  Google Scholar 

  27. S. Semiatin, T. Lehner, J. Miller, R. Doherty, and D. Furrer: Metallurgical and Materials Transactions A, 2007, vol. 38A: 910–921.

    Article  Google Scholar 

  28. S. Semiatin, F. Montheillet, G. Shen, and J. Jonas: Metallurgical and Materials Transactions A, 2002, vol. 33A: 2719–2727.

    Article  Google Scholar 

  29. J. S. Carpenter, R. J. McCabe, S. J. Zheng, T. A. Wynn, N. A. Mara, and I. J. Beyerlein: Metallurgical and Materials Transactions A, 2014, vol. 45(4): 2192–2208.

    Article  Google Scholar 

  30. S. Li, I. J. Beyerlein, D. J. Alexander, and S. C. Vogel: Acta Materialia, 2005, vol. 53(7): 2111–2125.

    Article  Google Scholar 

  31. S. Li, I. J. Beyerlein, C. T. Necker, D. J. Alexander, and M. Bourke: Acta Materialia, 2004, vol. 52(16): 4859–4875.

    Article  Google Scholar 

  32. S. C. Vogel, I. J. Beyerlein, M. A. Bourke, C. Tomé, P. Rangaswamy, C. Xu, and T. G. Langdon: Materials Science Forum, 2002, vol. 408-412: 673–678.

    Article  Google Scholar 

  33. S. G. Vogel, D. J. Alexander, I. J. Beyerlein, M. A. Bourke, D. W. Brown, B. Clausen, C. Tomé, B. Von Dreele, C. Xu, and T. G. Langdon: Materials Science Forum, 2003, vol. 426-432: 2661–2665.

    Article  Google Scholar 

  34. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright: SIAM Journal on optimization, 1998, vol. 9(1): 112–147.

    Article  Google Scholar 

  35. W. Hutchinson and M. Barnett: Scripta Materialia, 2010, vol. 63(7): 737–740.

    Article  Google Scholar 

  36. M. Echlin, J. Stinville, V. Miller, W. Lenthe, and T. Pollock: Acta Materialia, 2016, vol. 114: 164–175.

    Article  Google Scholar 

  37. T. R. Bieler and S. L. Semiatin: International Journal of Plasticity, 2002, vol. 18(9): 1165–1189.

    Article  Google Scholar 

  38. M. Knezevic, R. A. Lebensohn, O. Cazacu, B. Revil-Baudard, G. Proust, S. C. Vogel, and M. E. Nixon: Materials Science and Engineering: A, 2013, vol. 564: 116–126.

    Article  Google Scholar 

  39. L. Wang, Z. Zheng, H. Phukan, P. Kenesei, J.-S. Park, J. Lind, R. Suter, and T. Bieler: Acta Materialia, 2017, vol. 132: 598–610.

    Article  Google Scholar 

  40. J. C. Williams, R. G. Baggerly, and N. E. Paton: Metallurgical and Materials Transactions A, 2002, vol. 33(13): 837–850.

    Article  Google Scholar 

  41. V. Hasija, S. Ghosh, M. J. Mills, and D. S. Joseph: Acta Materialia, 2003, vol. 51(15): 4533–4549.

    Article  Google Scholar 

  42. D. C. Pagan, J. V. Bernier, D. Dale, J. P. Ko, T. J. Turner, B. Blank, and P. A. Shade: Scripta Materialia, 2018, vol. 142: 96–100.

    Article  Google Scholar 

  43. I. Jones and W. Hutchinson: Acta Metallurgica, 1981, vol. 29: 951–968.

    Article  Google Scholar 

  44. N. E. Paton, J. Williams, and G. Rauscher: in Titaium Science and Technology, pp. 1049–1069, 1973.

    Google Scholar 

  45. J. Fundenberger, M. Philippe, F. Wagner, and C. Esling: Acta Materialia, 1997, vol. 45: 4041–4055.

    Article  Google Scholar 

  46. I. Bantounas, D. Dye, and T. C. Lindley: Acta Materialia, 2009, vol. 57(12): 3584–3595.

    Article  Google Scholar 

  47. F. Bridier, D. L. McDowell, P. Villechaise, and J. Mendez: International Journal of Plasticity, 2009, vol. 25(6): 1066–1082.

    Article  Google Scholar 

  48. F. Bridier, P. Villechaise, and J. Mendez: Acta Materialia, 2005, vol. 53(3): 555–567.

    Article  Google Scholar 

  49. D. Dunst and H. Mecking: Zeitschrift fur Metallkunde, 1996, vol. 87(6): 498.

    Google Scholar 

  50. S. L. Semiatin and T. R. Bieler: Acta materialia, 2001, vol. 49(17): 3565–3573.

    Article  Google Scholar 

  51. S. L. Semiatin and T. R. Bieler: Metallurgical and Materials Transactions A, 2001, vol. 32(7): 1787–1799.

    Article  Google Scholar 

  52. G. Venkataramani, D. Deka, and S. Ghosh: Journal of Engineering Materials and Technology, 2006, vol. 128(3): 356.

    Article  Google Scholar 

  53. Z. Zhang, T.-S. Jun, T. B. Britton, and F. P. Dunne: Journal of the Mechanics and Physics of Solids, 2016, vol. 95: 393–410.

    Article  Google Scholar 

  54. D. C. Pagan, P. A. Shade, N. R. Barton, J.-S. Park, P. Kenesei, D. B. Menasche, and J. V. Bernier: Acta Materialia, 2017, vol. 128: 406–417.

    Article  Google Scholar 

  55. T. Furuhara, B. Poorganji, H. Abe, and T. Maki: Jom, 2007, vol. 59(1): 64–67.

    Article  Google Scholar 

  56. D. He, J. Zhu, Z. Lai, Y. Liu, and X. Yang: Materials & Design, 2013, vol. 46: 38–48.

    Article  Google Scholar 

  57. X. Yang, H. Miura, and T. Sakai: Materials transactions, 2003, vol. 44(1): 197–203.

    Article  Google Scholar 

  58. J. P. Hadorn, K. Hantzsche, S. Yi, J. Bohlen, D. Letzig, J. A. Wollmershauser, and S. R. Agnew: Metallurgical and Materials Transactions A, 2011, vol. 43(4): 1347–1362.

    Article  Google Scholar 

  59. M. Barnett, A. Sullivan, N. Stanford, N. Ross, and A. Beer: Scripta Materialia, 2010, vol. 63(7): 721–724.

    Article  Google Scholar 

  60. T. Wang, J. J. Jonas, and S. Yue: Metallurgical and Materials Transactions A, 2017, vol. 48(2): 594–600.

    Article  Google Scholar 

  61. V. M. Miller: Texture Evolution during Thermomechanical Processing in Rare Earth Free Magnesium Alloys, PhD dissertation, University of California Santa Barbara, Santa Barbara, CA, 2016.

  62. V. M. Miller and T. M. Pollock: Metallurgical and Materials Transactions A, 2016, vol. 47(4): 1854–1864.

    Article  Google Scholar 

  63. F. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, 2004.

    Google Scholar 

Download references

Acknowledgments

This work was conducted as part of the in-house research of the Metals Branch of the Air Force Research Laboratory’s Materials and Manufacturing Directorate. VMM was supported under contract FA8650-15-D-5230. The authors would like to thank P. Fagin and A. Blankenship for experimental assistance and GE Global Research for supplying the material used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Miller.

Additional information

Manuscript submitted December 20, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, V.M., Semiatin, S.L., Szczepanski, C. et al. Optimization of VPSC Model Parameters for Two-Phase Titanium Alloys: Flow Stress Vs Orientation Distribution Function Metrics. Metall Mater Trans A 49, 3624–3636 (2018). https://doi.org/10.1007/s11661-018-4716-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4716-y

Navigation