Skip to main content
Log in

A Processing Route for Achieving Isotropic Tensile Properties in Laser Solid Formed α+β Titanium Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A two-step processing route for achieving isotropic tensile properties in laser solid formed (LSF) α+β titanium alloy is proposed. Titanium alloy parts containing equiaxed prior β grains and relative homogeneous α laths were obtained by adjusting the LSF processing parameters and the post heat treatment conditions, respectively. The microstructure and texture characteristics of the LSFed titanium alloy under different heat treatment conditions were investigated. The room temperature tensile tests were performed at various loaded angles with respect to the building direction. The results showed that the prior β grains are close to isotropic both in morphology and texture. The scale and volume fraction of the α laths vary with the heat treatment conditions. The tensile properties are anisotropic after the aging treatment, while the tensile properties are isotropic after the solution + aging treatments. The fracture surface and microstructure analysis indicated that the anisotropy in the tensile properties is directly related to the heterogeneous α laths in the aging-treated specimens. The isotropic tensile properties in the LSFed titanium alloys could be achieved by adopting the processing route proposed in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from References [32,33,34], with permission

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Banerjee and J.C. Williams: Acta Mater., 2013, vol. 61, pp. 844–79.

    Article  Google Scholar 

  2. 2. Lütjering G, Williams JC (2007) Titanium. Springer, Berlin

    Google Scholar 

  3. W.D. Huang and X. Lin: Addit. Manuf., 2014, vol. 1, pp. 156–65.

    Google Scholar 

  4. F.C. Liu, X. Lin, C.P. Huang, M.H. Song, G.L. Yang, J. Chen, and W.D. Huang: J. Alloys Compd., 2011, vol. 509, pp. 4505–09.

    Article  Google Scholar 

  5. Y.Z. Zhang, M.Z. Xi, S.Y. Gao and L.K. Shi: J. Mater. Process. Tech., 2003, vol. 142, pp. 582-85.

    Article  Google Scholar 

  6. Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, and S.B. Tor: Mater. Des., 2018, vol. 139, pp.565-86.

    Article  Google Scholar 

  7. J.J. Lewandowski and M. Seifi: Annu. Rev. Mater. Res., 2016, vol. 46, pp. 151–86.

    Article  Google Scholar 

  8. P.A. Kobryn, E.H. Moore, and S.L. Semiatin: Scr. Mater., 2000, vol. 43, pp. 299–305.

    Article  Google Scholar 

  9. S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2010, vol. 41, pp. 3422–34.

    Article  Google Scholar 

  10. L.J Song, H. Xiao, J.Y. Ye and S.M. Li: Surf. Coat. Tech., 2016, vol. 307, pp. 761-71.

    Article  Google Scholar 

  11. E. Brandl, F. Palm, V. Michailov, B. Viehweger, and C. Leyens: Mater. Des., 2011, vol. 32, pp. 4665–75.

    Article  Google Scholar 

  12. B. Baufeld: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2012, vol. 226, pp. 126–36.

    Article  Google Scholar 

  13. S.M. Kelly and S.L. Kampe: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1861–67.

    Article  Google Scholar 

  14. S.M. Kelly and S.L. Kampe: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1869–79.

    Article  Google Scholar 

  15. Crespo: In Convection and Conduction Heat Transfer, (InTech: 2011), pp. 315-40.

  16. Q. Zhang, J. Chen, H. Tan, X. Lin, and W.D. Huang: Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 2058–66.

    Article  Google Scholar 

  17. C.L. Qiu, N.J.E. Adkins, and M.M. Attallah: Mater. Sci. Eng. A, 2013, vol. 578, pp. 230–39.

    Article  Google Scholar 

  18. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian: Acta Mater, 2015, vol. 85, pp. 74–84.

    Article  Google Scholar 

  19. B.E. Carroll, T.A. Palmer, and A.M. Beese: Acta Mater., 2015, vol. 87, pp. 309–20.

    Article  Google Scholar 

  20. P.L. Blackwell and A. Wisbey: J. Mater. Process. Technol., 2005, vol. 170, pp. 268–76.

    Article  Google Scholar 

  21. A.E. Wilson-Heid, Z.Q. Wang, B. McCornac, and A.M. Beese: Mater. Sci. Eng. A, 2017, vol. 706, pp. 287–94.

    Article  Google Scholar 

  22. T. Vilaro, C. Colin, and J.D. Bartout: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2011, vol. 42, pp. 3190–99.

    Article  Google Scholar 

  23. C.L. Qiu, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth, and M.M. Attallah: J. Alloys Compd., 2015, vol. 629, pp. 351–61.

    Article  Google Scholar 

  24. H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana: Mater. Sci. Eng. A, 2017, vol. 685, pp. 417–28.

    Article  Google Scholar 

  25. S. Tammas-Williams, H. Zhao, F. Léonard, F. Derguti, I. Todd, and P.B. Prangnell: Mater. Charact., 2015, vol. 102, pp. 47–61.

    Article  Google Scholar 

  26. M. Seifi, A. Salem, D. Satko, J. Shaffer, and J.J. Lewandowski: Int. J. Fatigue, 2017, vol. 94, pp. 263–87.

    Article  Google Scholar 

  27. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp.112-224.

    Article  Google Scholar 

  28. B. Vrancken, L. Thijs, J.-P. Kruth, and J. Van Humbeeck: J. Alloys Compd., 2012, vol. 541, pp. 177–85.

    Article  Google Scholar 

  29. S.Y. Zhang, X. Lin, J. Chen, and W.D. Huang: Rare Met., 2009, vol. 28, pp. 537–44.

    Article  Google Scholar 

  30. S.H. Mok, G. Bi, J. Folkes, I. Pashby, and J. Segal: Surf. Coatings Technol., 2008, vol. 202, pp. 4613–19.

    Article  Google Scholar 

  31. Y.Z. Zhang, Y.Q. Zhao., H.L. Qu, H. Li, F. Liang, H.C. Guo, D.K. Huang: Chinese J. Rare Met., 2004, vol. 28, pp. 34–8.

    Google Scholar 

  32. Q. Zhang, J. Chen, P.F. Guo, H. Tan, X. Lin, and W.D. Huang: Mater. Des., 2015, vol. 88, pp. 550–57.

    Article  Google Scholar 

  33. Q. Zhang, J. Chen, Z. Zhao, H. Tan, X. Lin, and W.D. Huang: Mater. Sci. Eng. A, 2016, vol. 673, pp. 204–12.

    Article  Google Scholar 

  34. Q. Zhang, J. Chen, X. Lin, H. Tan, and W.D. Huang: J. Mater. Process. Technol., 2016, vol. 238, pp. 202–11.

    Article  Google Scholar 

  35. Q. Zhang, J. Chen, L.L. Wang, H. Tan, X. Lin, and W.D. Huang: J. Mater. Sci. Technol., 2016, vol. 32, pp. 381–86.

    Article  Google Scholar 

  36. Q. Zhang, J. Chen, H. Tan, X. Lin, and W.D. Huang: J. Alloys Compd., 2016, vol. 666, pp. 380–86.

    Article  Google Scholar 

  37. F. Bachmann, R. Hielscher, and H. Schaeben: Solid State Phenom., 2010, vol. 160, pp. 63–8.

    Article  Google Scholar 

  38. R. Hielscher and H. Schaeben: J. Appl. Cryst., 2008, vol. 41, pp. 1024–37.

    Article  Google Scholar 

  39. S. Suwas and R.K. Ray: Crystallographic Texture of Materials, Springer London, London, 2014.

    Book  Google Scholar 

  40. Z. Li, J. Li, Y.Y. Zhu, X.J. Tian, and H.M Wang: J. Alloys Compd., 2016, vol. 661, pp. 126–35.

  41. C.Sauer and G. Luetjering: J. Mater. Process. Technol., 2001, vol. 117, pp. 311–17.

    Article  Google Scholar 

  42. S.C. Wang, M. Aindow, and M.J. Starink: Acta Mater., 2003, vol. 51, pp. 2485–503.

    Article  Google Scholar 

  43. S. Banumathy, R.K. Mandal, and A.K. Singh: J. Alloys Compd., 2010, vol. 500, pp. 26–30.

    Article  Google Scholar 

  44. R.J. Bourcier, D.A. Koss, R.E. Smelser, and O. Richmond: Acta Metall., 1986, vol. 34, pp. 2443–53.

    Article  Google Scholar 

  45. P. Kumar and K.S.R. Chandran: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2017, vol. 48, pp. 2301–19.

    Article  Google Scholar 

  46. M.T. Jia, D.L. Zhang, J.M. Liang and B. Gabbitas: Metall. Mater. Trans. A., 2017, vol. 48, pp. 2015-29.

    Article  Google Scholar 

  47. R. Sarkar, A. Mukhopadhyay, P. Ghosal, T.K. Nandy, and K.K. Ray: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2015, vol. 46, pp. 3516–27.

    Article  Google Scholar 

  48. E.O. Hall: Proc. Phys. Soc. Sect. B, 1951, vol. 64, pp. 747–53.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Technologies R&D Program (2016YFB11000100), Fundamental Research Funds for the Central Universities (Grant No. 21618325) and the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201807).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Chen or Xin Lin.

Additional information

Manuscript submitted 20 December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Chen, J., Qi, Z. et al. A Processing Route for Achieving Isotropic Tensile Properties in Laser Solid Formed α+β Titanium Alloy. Metall Mater Trans A 49, 3651–3662 (2018). https://doi.org/10.1007/s11661-018-4695-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4695-z

Navigation