Delamination of Pearlitic Steel Wires: The Defining Role of Prior-Drawing Microstructure


This article reports the occasional (< 10 pct of the actual production) delamination of pearlitic wires subjected to a drawing strain of ~ 2.5. The original wire rods which exhibited post-drawing delamination had noticeably lower axial alignment of the pearlite: 22 ± 5 pct vs 34 ± 4 pct in the nondelaminated wires. Although all wires had similar through-thickness texture and stress gradients, delaminated wires had stronger gradients in composition and higher hardness across the ferrite–cementite interface. Carbide dissolution and formation of supersaturated ferrite were clearly correlated with delamination, which could be effectively mitigated by controlled laboratory annealing at 673 K. Direct observations on samples subjected to simple shear revealed significant differences in shear localizations. These were controlled by pearlite morphology and interlamellar spacing. Prior-drawing microstructure of coarse misaligned pearlite thus emerged as a critical factor in the wire drawing-induced delamination of the pearlitic wires.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Y. Li, D. Raabe, M. Herbig, P. Choi, S. Goto, A. Kostka and H. Yarita: Phys. Rev. Lett., 2014, Vol. 113, 106104, pp. 1-5.

    Google Scholar 

  2. 2.

    M. Zelin: Acta Mater., 2002, Vol. 50, pp. 4431-4447.

    CAS  Article  Google Scholar 

  3. 3.

    X. Zhang, A. Godfrey, X. Huang, N. Hansen, Q. Liu, Acta Mater., 2011, Vol. 59, pp. 3422-3430.

    CAS  Article  Google Scholar 

  4. 4.

    C. Borchers and R. Kirchheim: Prog. Mater. Sci., 2016, Vol. 82, pp. 405–444.

    CAS  Article  Google Scholar 

  5. 5.

    J. D. Embury and R. M. Fisher: Acta Metall., 1966, Vol. 14, pp. 147-159.

    CAS  Article  Google Scholar 

  6. 6.

    G. Langford: Metall. Trans. A, 1970, Vol. 1, pp. 465-477.

    CAS  Article  Google Scholar 

  7. 7.

    J. Languillaume, G. Kapelski and B. Baudelet: Acta Mater., 1997, Vol. 45, pp. 1201-1212.

    CAS  Article  Google Scholar 

  8. 8.

    K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie and T. Takahashi: Scr. Mater., 2001, Vol. 44, pp. 977–983

    CAS  Article  Google Scholar 

  9. 9.

    W. J. Nam, C. M. Bae, S. J. Oh and S. Kwon: Scr. Mater., 2000, Vol. 42, pp. 457–463.

    CAS  Article  Google Scholar 

  10. 10.

    S. Goto, R. Kirchheim, T. Al-Kassab and C. Borchers: Trans. Nonferrous Met. SOC. China, 2007, Vol. 17, pp. 1129-1138.

    CAS  Article  Google Scholar 

  11. 11.

    N. Maruyama, T. Tarui and H. Tashiro: Scr. Mater., 2002, Vol. 46, pp. 599-603.

    CAS  Article  Google Scholar 

  12. 12.

    Y. S. Yang and C. G. Park: Int. J Mod. Phy. B, 2008, Vol. 22, pp. 5471–5476.

    CAS  Article  Google Scholar 

  13. 13.

    K. Shimizu and N. Kawabe: ISIJ Int., 2001, Vol. 41, pp. 183–191.

    CAS  Article  Google Scholar 

  14. 14.

    X. Hu, L. Wang, F. Fang, Z. Ma, Z. Xie and J. Jiang: J Mater Sci., 2013,Vol. 48, pp. 5528–5535.

    CAS  Article  Google Scholar 

  15. 15.

    D.B. Park, E.G. Kang and W.J. Nam: J Mater. Proc. Tech., 2007, Vol. 187–188, pp. 178–181.

    Article  Google Scholar 

  16. 16.

    D. B. Park, J. W. Lee, Y. S. Lee, K. T. Park and W. J. Nam: Met. Mater. Int., 2009, Vol. 15, pp. 197-202.

    CAS  Article  Google Scholar 

  17. 17.

    N. Guo, B. Song, B. Shu and Q. Liu: Acta Metall. Sin., 2015, Vol. 28, pp. 707-714.

    CAS  Article  Google Scholar 

  18. 18.

    S. K. Lee, D. C. Ko and B. M. Kim: Mater. Des., 2009, Vol. 30, pp. 2919-2927.

    CAS  Article  Google Scholar 

  19. 19.

    J.W. Lee, J.C. Lee, Y.S. Lee, K.T. Park and W.J. Nam: J Mater. Proc. Tech., 2009, Vol. 209, pp. 5300–5304.

    CAS  Article  Google Scholar 

  20. 20.

    M. Tanaka, H. Saito, M. Yasumaru and K. Higashida: Scr. Mater., 2016, Vol. 112, pp. 32-36

    CAS  Article  Google Scholar 

  21. 21.

    H. M. Baek, S. K. Hwang, H. S. Joo, Y. T. Im, I. H. Son and C. M. Bae: Mater. Des., 2014, Vol. 62, pp. 137-148

    CAS  Article  Google Scholar 

  22. 22.

    S.W. Joung, U.G.Kang, S.P.Hong, Y.W.Kim and W.J.Nam: Mater. Sci. Eng. A, 2013, Vol. 586, pp. 171-177

    CAS  Article  Google Scholar 

  23. 23.

    C. M. Bae, W. J. Nam and C. S. Lee: Scr. Mater., 1996, Vol. 35, pp. 641-646.

    CAS  Article  Google Scholar 

  24. 24.

    A. Durgaprasad, Ph.D. Thesis, Dept. of Metallurgical Engineering and Materials Science, Indian Institute of Bombay, Mumbai, 2017.

  25. 25.

    A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R. D. Doherty and I. Samajdar, Acta Mater., 2017, Vol. 129, pp. 278-289.

    CAS  Article  Google Scholar 

  26. 26.

    A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R. D. Doherty and I. Samajdar: Metall. Trans A., 2017, vol. 48, pp. 4583-4597.

    CAS  Article  Google Scholar 

  27. 27.

    A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R. D. Doherty and I. Samajdar: “Microstructural Engineering in Eutectoid Steel: A Technological Possibility?”, Under review (Manuscript # E-TP-17-1040-A), Metallurgical and Materials Transaction A, 2017.

  28. 28.

    T. Z. Zhao, S. H. Zhang, G. L. Zhang, H. W. Song and M. Cheng: Mater. Des., 2014, Vol. 59, pp. 397-405

    CAS  Article  Google Scholar 

  29. 29.

    P. Van Houtte, The “MTM-FHM” and “MTM-TAY” Software System - Version 2, Manual, Department of MME, KLU Leuven, Belgium, 1995.

    Google Scholar 

  30. 30.

    HJ Bunge (2013) Texture Analysis in Materials Science: Mathematical Methods, Elsevier, Oxford.

    Google Scholar 

  31. 31.

    P. Van Houtte P. and L. De Buyser: Acta Metall. Mater., 1993, Vol. 41, pp. 323.

    Article  Google Scholar 

  32. 32.

    Verlinden B, Driver J, Samajdar I, Doherty RD. Thermo-Mechanical Processing of Metallic Materials, 1st edition. Pergamon Materials Series, Elsevier, Oxford; 2007.

    Google Scholar 

  33. 33.

    A. Borbely, J. H. Driver and T. Ungar: Acta Mater., 2000, Vol. 48, pp. 2005-2016.

    CAS  Article  Google Scholar 

  34. 34.

    T. Ungar, I. Dragomir, A. Revesz and A. Borbely: J. Appl. Cryst., 1999, Vol. 32, pp. 992 - 1002

    CAS  Article  Google Scholar 

  35. 35.

    Aniruddha Biswas, Debasis Sen, Sudip Kumar Sarkar, Sarita, S. and David N. Seidman: Acta Mater., 2016, Vol. 116, pp. 219-230

    CAS  Article  Google Scholar 

  36. 36.

    Aniruddha Biswas, Donald J. Siegel and David N. Seidman: Acta Mater., 2014, Vol. 75, pp. 322–336.

    CAS  Article  Google Scholar 

  37. 37.

    T. Z. Zhao, G. L. Zhan, S. H. Zhang, L. Y. Zhang: J Iron Steel Res. Int., 2016, vol. 23, pp. 1206-1212.

    Article  Google Scholar 

  38. 38.

    L. Zhou, F. Fang, L. Wang, H. Chen, Z. Xie, J. Jiang: Mater. Sci. Eng. A, 2018, vol. 713, pp. 52–60.

    CAS  Article  Google Scholar 

  39. 39.

    VN Gridnev, VG Gavrilyuki, Y Dekhtyayr, YM Eshkov, PS Nizin, VG Prokope (1972) Phys. Stat. Sol. A 11:689-694.

    Article  Google Scholar 

  40. 40.

    Y.J. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe and R. Kirchheim: Acta Mater., 2011, Vol. 59, pp. 3965–3977.

    CAS  Article  Google Scholar 

  41. 41.

    Y.J. Li, P. Choi, C. Borchers, Y. Z. Chen, S. Goto, D. Raabe and R. Kirchheim: Ultramicroscopy, 2011, Vol. 111, pp. 628–632.

    CAS  Article  Google Scholar 

  42. 42.

    J. Chakraborty, M. Ghosh, Rajeev Ranjan, G. Das, D. Das and S. Chandra: Phil. Mag., 2013, Vol. 93,pp. 4598-4616.

    CAS  Article  Google Scholar 

  43. 43.

    V. G. Gavriljuk: Mater Sci Eng. A., 2003, Vol. 345, pp. 81-89.

    Article  Google Scholar 

  44. 44.

    H. G. Read, W. T. Reynolds Jr, K. Hono and T. Tarui: Scr Mater., 1997, Vol. 37, pp. 1221-1230

    CAS  Article  Google Scholar 

  45. 45.

    M. H. Hong, W. T. Reynolds Jr, T. Tarui and K. Hono: Metall. Mater Trans. A., 1999, Vol. 30, pp. 717-27

    CAS  Article  Google Scholar 

  46. 46.

    Y. Li, D. Raabe, M. Herbig, P. Choi, S. Goto, A. Kostka, H. Yarita, C. Borchers and R. Kirchheim: Phy Rev Let., 2014, Vol. 113, pp. 1-5.

    Google Scholar 

  47. 47.

    C. Borchers, T. A. Kasaab, S. Goto and R. Kirchheim: Mater Sci Eng. A, 2009, Vol. 502, pp. 131-138.

    Article  Google Scholar 

  48. 48.

    C. A. Bronkhorst, E. K. Cerreta, Q. Xue, P. J. Maudlin, T. A. Mason and G. T. Gray, Int. J Plast, 2006, Vol. 22, pp. 1304-1335.

    CAS  Article  Google Scholar 

  49. 49.

    Y. Yang, F. Jiang, B. M. Zhou, X. M. Li, H. G. Zheng and Q. M. Zhang: Mater. Sci. Eng. A, 2011, Vol. 528, pp. 2787-2794.

    Article  Google Scholar 

  50. 50.

    N. Keskar, S. Mukherjee, K.V. Mani Krishna, D. Srivastava, G.K. Dey, P. Pant, R.D. Doherty and I. Samajdar: Acta Mater., 2014, Vol. 69, pp. 265–274.

    CAS  Article  Google Scholar 

  51. 51.

    Jaiveer Singh, S. Mahesh, Shomic Roy, Gulshan Kumar, D. Srivastava, G.K. Dey, N. Saibaba and I. Samajdar: Acta Mater., 2017, Vol. 123, pp. 337-349.

    Article  Google Scholar 

  52. 52.

    Gulshan Kumar, Sandip Balo, Ashish Dhoble, Jaiveer Singh, Ramesh Singh, D. Srivastava, G.K. Dey and I. Samajdar: Metall. Mater. Trans. A, 2017, Vol. 48, pp. 2844–2857.

    Article  Google Scholar 

Download references


Supports from the Tata Steel and the DST (Department of Science and Technology, India) are acknowledged. The authors would also like to express their appreciation for the usage of the National Facility of Texture and OIM (at IIT Bombay), the Nano-Indention facility (a central facility of IIT Bombay), and the TEM laboratory (of SAIF, IIT Bombay). Support from the CoEST (Center of Excellence in Steel Technology) IIT Bombay is also acknowledged.

Author information



Corresponding author

Correspondence to I. Samajdar.

Additional information

Manuscript submitted October 25, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Durgaprasad, A., Giri, S., Lenka, S. et al. Delamination of Pearlitic Steel Wires: The Defining Role of Prior-Drawing Microstructure. Metall Mater Trans A 49, 2037–2047 (2018).

Download citation