Skip to main content

Advertisement

Log in

An Ultra-low-Carbon Steel with Outstanding Fish-Scaling Resistance and Cold Formability for Enameling Applications

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Developing specialized, high-performance steels for enameling is in demand as enameled steel products are finding increasingly decorative and protective applications across industries. Here, we present an ultra-low-carbon steel with excellent fish-scaling resistance and cold formability, which essentially warrant its success in enameling applications. Its fish-scaling resistance was examined by both hydrogen permeation tests and visual inspection, and was found to outperform the benchmark steel—interstitial free (IF) steel. The steel’s cold formability was evaluated with the forming limit curve (FLC), proven to be superior to the IF steel under certain loading conditions, e.g., uniaxial tension. Through integrated microscopic characterizations and thermodynamic analyses, it was confirmed that a large amount of uniformly dispersed (Ti, N), (Ti, S), (Ti, C, S), and (Ti, C) containing particles precipitated in the steel, serving as irreversible hydrogen traps and prominently contributing to its outstanding fish-scaling resistance. The possibility of further optimizing the fish-scaling resistance by refining precipitates is outlined with the aid of thermodynamic calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Bodaghi and A. Davarpanah: Process. Appl. Ceram., 2011, vol. 5, pp. 215-22.

    Article  Google Scholar 

  2. K.A. Maskall and D. White: Vitreous enamelling: a guide to modern enamelling practice, Pergamon Press, Oxford, UK, 1986.

    Google Scholar 

  3. J. Lawrence and L. Li: Opt. Laser. Eng., 1999, vol. 32, pp. 353-65.

    Article  Google Scholar 

  4. F. Dong, L. Du, X. Liu and F. Xue: Mater. Charact., 2013, vol. 84, pp. 81-7.

    Article  Google Scholar 

  5. E.P. DeGarmo, J.T. Black and R.A. Kohser: Materials and processes in manufacturing, 9th ed., Wiley, Hoboken, NJ, 2003.

    Google Scholar 

  6. S.P. Rodtsevich, S.Y. Eliseev and V.V. Tavgen: Glass Ceram., 2003, vol. 60, pp. 23-5.

    Article  Google Scholar 

  7. A.V. Ryabova, E.A. Yatsenko, V.V. Khoroshavina and L.V. Klimova: Glass Ceram., 2017, vol. 74, pp. 282-87.

    Article  Google Scholar 

  8. S. Rossi and E. Scrinzi: Chem. Eng. Process., 2013, vol. 68, pp. 74-80.

    Article  Google Scholar 

  9. J. Lawrence and L. Li: Surf. Coat. Technol., 2001, vol. 140, 238-43.

    Article  Google Scholar 

  10. A. Nishino, K. Sonetaka, K. Kimura and Y. Watanabe: U.S. Patent No. 4460630, 1984

  11. E. Scrinzi and S. Rossi: Mater. Design, 2010, vol. 31, pp. 4138-46.

    Article  Google Scholar 

  12. M.B. Lupescu, M. Zaharescu and A. Andrei: Mater. Sci. Eng. A, 1997, vol. 232, pp. 73-9.

    Article  Google Scholar 

  13. G. Ling and J. He: Mater. Sci. Eng. A, 2004, vol. 379, pp. 432-36.

    Article  Google Scholar 

  14. X. Yang, A. Jha, R. Brydson and R.C. Cochrane: Thin Solid Films, 2003, vol. 443, pp. 33-45.

    Article  Google Scholar 

  15. L. Samiee, H. Sarpoolaky and A. Mirhabibi: Mater. Sci. Eng. A, 2007, vol. 458, pp. 88-95.

    Article  Google Scholar 

  16. A. Conde and J.J. de Damborenea: Corros. Sci., 2002, vol. 44, pp. 1555-67.

    Article  Google Scholar 

  17. A. Conde and J. de Damborenea: Surf. Coat. Technol., 2002, vol. 150, pp. 212-17.

    Article  Google Scholar 

  18. F. Tang, G. Chen, J.S. Volz, R.K. Brow and M. Koenigstein: Constr. Build. Mater., 2012, vol. 35, pp. 376-84.

    Article  Google Scholar 

  19. S. Rossi, C. Zanella and R. Sommerhuber: Mater. Design, 2014, vol. 55, pp. 880-87.

    Article  Google Scholar 

  20. S. Yılmaz, G. Bayrak, S. Sen and U. Sen: Mater. Design, 2006, vol. 27, pp. 1092-96.

    Article  Google Scholar 

  21. J. Pero-Sanz, M. Ruiz-Delgado, V. Martinez and J.I. Verdeja: Mater. Charact., 1999, vol. 43, pp. 303-09.

    Article  Google Scholar 

  22. A.B. Hadžipašic, J. Malina and Š. Nižnik: Kovove Mater., 2012, vol. 50, pp. 345-50.

    Google Scholar 

  23. G.H. Akbari, C.M. Sellars and J.A. Whiteman: Acta Mater., 1997, vol. 45, pp. 5047-58.

    Article  Google Scholar 

  24. M.Z. Quadir and B.J. Duggan: Acta Mater., 2004, vol. 52, pp. 4011-21.

    Article  Google Scholar 

  25. D. Wang: Appl. Surf. Sci., 2009, vol. 255, pp. 4640-45.

    Article  Google Scholar 

  26. R. Valentini, A. Solina, S. Matera and P. De Gregorio: Metall. Mater. Trans. A, 1996, vol. 27, pp. 3773-80.

    Article  Google Scholar 

  27. N. Winzer, O. Rott, R. Thiessen, I. Thomas, K. Mraczek, T. Höche, L. Wright and M. Mrovec: Mater. Des., 2016, vol. 92, 450.

    Article  Google Scholar 

  28. GB/T 29515-2013: Cold rolled steel sheet for Enameling-Fish-scaling sensitivity test-Hydrogen permeation method, China National Standardization Administration, 2013.

  29. H. Abrams: Metallography,1971, vol. 4, pp. 59-78.

    Article  Google Scholar 

  30. J.W. Martin: Precipitation hardening: theory and applications, Butterworth-Heinemann, Oxford, 2012.

    Google Scholar 

  31. A.J. Ardell: Metall. Trans. A, 1985, vol. 16, pp. 2131-65.

    Article  Google Scholar 

  32. T.B. Stoughton: Int. J. Mech. Sci., 2000, vol. 42, pp. 1-27.

    Article  Google Scholar 

  33. Y. Zhao, X. Huang, B. Yu, X. Yuan and X. Liu: Materials, 2017, 10, 1012.

    Article  Google Scholar 

  34. D. Pérez, K. Verbeken, L. Duprez and M. Verhaege: Mater. Sci. Eng. A, 2012, 551, 50-58.

    Article  Google Scholar 

  35. W. Wan, Y.Y. Shan and K. Yang: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2147-58.

    Google Scholar 

  36. X. Yang, D. Vanderschueren, J. Dilewijns, C. Standaert and Y. Houbaert: ISIJ Int., 1996, vol. 36, pp. 1286-94.

    Article  Google Scholar 

  37. N. Yoshinaga, K. Ushioda, S. Akamatsu and O. Akisue: ISIJ Int., 1994, vol. 34, pp. 24-32.

    Article  Google Scholar 

  38. S.W. Ooi and G. Fourlaris: Mater. Charact. 2006, vol. 56, pp. 214-26.

    Article  Google Scholar 

  39. M. Hua, C.I. Garcia and A.J. DeArdo: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1769-80.

    Article  Google Scholar 

  40. Q. Yong: Second phases in structural steels, Metallurgical Industry Press, Beijing, 2006.

    Google Scholar 

  41. K.A. Taylor: Scripta Metall. Mater., 1995, vol. 32, pp. 7-12.

    Article  Google Scholar 

  42. E.J. Pavlina, J.G. Speer and C.J. Van Tyne: Scripta Mater., 2012, vol. 66, pp. 243-246.

    Article  Google Scholar 

  43. J.O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman: Calphad, 2002, vol. 26, pp. 273-312.

    Article  Google Scholar 

  44. F. Dong, L. Du, X. Liu and F. Xue: Acta Metall. Sin., 2013, vol. 49, pp. 1160-68.

    Article  Google Scholar 

  45. A.J. Ardell: Metall. Trans., 1985, vol. 16, pp. 2131-2165.

    Article  Google Scholar 

Download references

Acknowledgments

Z.W. Liu acknowledges all the supports provided by Shougang Research Institute of Technology in the course of completing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Li.

Additional information

Manuscript submitted June 5, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, W., Shao, X. et al. An Ultra-low-Carbon Steel with Outstanding Fish-Scaling Resistance and Cold Formability for Enameling Applications. Metall Mater Trans A 50, 1805–1815 (2019). https://doi.org/10.1007/s11661-018-05101-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-05101-z

Navigation