Skip to main content
Log in

Influence of Heating Rate on Ferrite Recrystallization and Austenite Formation in Cold-Rolled Microalloyed Dual-Phase Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Compared with other dual-phase (DP) steels, initial microstructures of cold-rolled martensite-ferrite have scarcely been investigated, even though they represent a promising industrial alternative to conventional ferrite-pearlite cold-rolled microstructures. In this study, the influence of the heating rate (over the range of 1 to 10 K/s) on the development of microstructures in a microalloyed DP steel is investigated; this includes the tempering of martensite, precipitation of microalloying elements, recrystallization, and austenite formation. This study points out the influence of the degree of ferrite recrystallization prior to the austenite formation, as well as the importance of the cementite distribution. A low heating rate giving a high degree of recrystallization, leads to the formation of coarse austenite grains that are homogenously distributed in the ferrite matrix. However, a high heating rate leading to a low recrystallization degree, results in a banded-like structure with small austenite grains surrounded by large ferrite grains. A combined approach, involving relevant multiscale microstructural characterization and modeling to rationalize the effect of the coupled processes, highlights the role of the cold-worked initial microstructure, here a martensite-ferrite mixture: recrystallization and austenite formation commence in the former martensite islands before extending in the rest of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Hofmann, D. Matissen, and T.W. Schaumann: Steel Res. Int., 2009, vol. 80, pp. 22–8.

    Google Scholar 

  2. R. Kuziak, R. Kawalla, and S. Waengler: Arch. Civ. Mech. Eng., 2008, vol. 8, pp. 103–17.

    Article  Google Scholar 

  3. K. Bleck and W. Phiou-on: Microstructure and Texture in Steels and Other Materials, Springer, London, 2009, pp. 145–63.

    Book  Google Scholar 

  4. O. Bouaziz, H. Zurob, and M. Huang: Steel Res. Int., 2013, vol. 84, pp. 937–47.

    Google Scholar 

  5. D.K. Matlock, G. Krauss, and J.G. Speer: Mater. Sci. Forum, 2005, vol. 500–501, pp. 87–96.

    Article  Google Scholar 

  6. N. Pottore, N. Fonstein, I. Gupta, and D. Bhattacharya: Proceedings of the International Conference on Advanced High Strength Sheet Steels for Automotive Applications, 2004, pp. 119–30.

  7. J. Zrnik, I. Mamuzic, and S. Dobatkin: Metalurgija, 2006, vol. 45, pp. 323–31.

    Google Scholar 

  8. C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 391–431.

    Article  Google Scholar 

  9. G.R. Speich, V.A. Demarest, and R.L. Miller: Metall. Trans. A, 1981, vol. 12, pp. 1419–28.

    Article  Google Scholar 

  10. C. Garcia and A. DeArdo: Metall. Trans. A, 1981, vol. 12, pp. 521–30.

    Article  Google Scholar 

  11. D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1985, vol. 16, pp. 1385–92.

    Article  Google Scholar 

  12. A. Marder: Metall. Trans. A, 1982, vol. 13, pp. 85–92.

    Article  Google Scholar 

  13. A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck: Comput. Mater. Sci., 2012, vol. 52, pp. 46–54.

    Article  Google Scholar 

  14. N. Nakada, Y. Arakawa, K.S. Park, T. Tsuchiyama, and S. Takaki: Mater. Sci. Eng. A, 2012, vol. 553, pp. 128–33.

    Article  Google Scholar 

  15. M. Kulakov, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3564–3576.

    Article  Google Scholar 

  16. S.A. Etesami, M.H. Enayati, and A.G. Kalashami: Mater. Sci. Eng. A, 2017, vol. 682, pp. 296–303.

    Article  Google Scholar 

  17. A. Karmakar, M. Ghosh, and D. Chakrabarti: Mater. Sci. Eng. A, 2013, vol. 564, pp. 389–99.

    Article  Google Scholar 

  18. A.G. Kalashami, A. Kermanpur, A. Najafizadeh, and Y. Mazaheri: Mater. Sci. Eng. A, 2016, vol. 658, pp. 355–66.

    Article  Google Scholar 

  19. Y. Kang, Q. Han, X. Zhao, and M. Cai: Mater. Des., 2013, vol. 44, pp. 331–9.

    Article  Google Scholar 

  20. C. Hutchinson, H. Zurob, C. Sinclair, and Y. Brechet: Scr. Mater., 2008, vol. 59, pp. 635–7.

    Article  Google Scholar 

  21. X. Liang, J. Li, and Y. Peng: Mater. Lett., 2008, vol. 62, pp. 327–9.

    Article  Google Scholar 

  22. J. Huang, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3363–75.

    Article  Google Scholar 

  23. A. Chbihi, D. Barbier, L. Germain, A. Hazotte, and M. Gouné: J. Mater. Sci., 2014, vol. 49, pp. 3608–21.

    Article  Google Scholar 

  24. P. Li, J. Li, Q. Meng, W. Hu, and D. Xu: J. Alloys Compd., 2013, vol. 578, pp. 320–7.

    Article  Google Scholar 

  25. A. Karmakar, M. Mandal, A. Mandal, M. Basiruddin Sk, S. Mukherjee, and D. Chakrabarti: Metall. Mater. Trans. A, 2016, vol. 47, pp. 268–281.

    Article  Google Scholar 

  26. M. Gouné, P. Maugis, and J. Drillet: J. Mater. Sci. Technol., 2012, vol. 28, pp. 728–36.

    Article  Google Scholar 

  27. H.S. Zurob, C.R. Hutchinson, Y. Brechet, and G. Purdy: Acta Mater., 2002, vol. 50, pp. 3077–94.

    Article  Google Scholar 

  28. A. Deschamps and Y. Brechet: Acta Mater., 1998, vol. 47, pp. 293–305.

    Article  Google Scholar 

  29. S.J. Jones and H.K.D.H. Bhadeshia: Acta Mater., 1997, vol. 45, pp. 2911–20.

    Article  Google Scholar 

  30. T. Ogawa, N. Maruyama, N. Sugiura, and N. Yoshinaga: ISIJ Int., 2010, vol. 50, pp. 469–75.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Patrick Barges from the Automotive Product Center – ArcelorMittal R&D for the TEM support, and Nathalie Valle from the Luxemburg Institute of Science and Technology for the Nano-SIMS measurements. This project was supported by the National Association of Research and Technology (ANRT – Project No. 865-2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dumont.

Additional information

Manuscript submitted January 19, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philippot, C., Bellavoine, M., Dumont, M. et al. Influence of Heating Rate on Ferrite Recrystallization and Austenite Formation in Cold-Rolled Microalloyed Dual-Phase Steels. Metall Mater Trans A 49, 66–77 (2018). https://doi.org/10.1007/s11661-017-4407-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4407-0

Navigation