Skip to main content
Log in

Interactions between ferrite recrystallization and austenite formation in high-strength steels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using both experimental and modeling approaches, we give some clarifications regarding the mechanisms of interaction between ferrite recrystallization and austenite formation in cold-rolled high-strength steels. Using different thermal paths, we show that ferrite recrystallization and austenite formation can be strongly interdependent. The nature of the interaction (weak or strong) affects significantly the austenite formation and the resulting microstructure. We show that the kinetics of austenite formation depends intrinsically on both heating rates and the extent of ferrite recrystallization. An unexpected behavior of austenite growth was also seen at high heating rates. A possible explanation is presented based on the nature of the local equilibrium at the ferrite–austenite interface. The microstructure is more heterogeneous and anisotropic when both austenite formation and ferrite recrystallization overlap. A mechanism of microstructural formation is proposed, and this is supported by 2D simulations’ images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The reference frame used in this work is RD: rolling direction, TD: transverse direction, and ND: direction normal to the plane of the sheet.

References

  1. Iung T, Azuma M, Bouaziz O et al (2003) A model for the prediction of microstructure and mechanical properties in cold rolled and annealed TRIP steels. Mater Sci Forum 426–432:3849–3854

    Article  Google Scholar 

  2. Goune M, Maugis P, Drillet J (2012) A criterion for the change from fast to slow regime of cementite dissolution in Fe–C–Mn steels. J Mater Sci Technol 28:728–736

    Article  Google Scholar 

  3. Arlazarov A, Goune M, Bouaziz O et al (2012) Evolution of microstructure and mechanical properties of medium Mn steels during double annealing. Mater Sci Eng A 542:31–39

    Article  Google Scholar 

  4. Ågren J, Vassilev GP (1984) Computer simulations of cementite dissolution in austenite. Mater Sci Eng A 64:95–103

    Article  Google Scholar 

  5. Ågren J, Abe H, Suzuki T, Sakuma Y (1986) The dissolution of cementite in a low-carbon steel during isothermal annealing at 700°C. Metall Trans A 17:617–620

    Article  Google Scholar 

  6. Hillert M, Nilsson K, Torndahl LE (1971) Effect of alloying elements on formation of austenite and dissolution of cementite. J Iron Steel Inst 209:49–66

    Google Scholar 

  7. Liu ZK, Agren J (1991) Morphology of cementite decomposition in an Fe–Cr–C alloys. Metall Trans A 22:1753–1759

    Article  Google Scholar 

  8. Speich G, Demarest V, Miller R (1981) Formation of austenite during intercritical annealing of dual-phase steels. Metall Trans A 12:1419–1428

    Article  Google Scholar 

  9. Garcia CI, Deardo AJ (1981) Formation of austenite in 1.5 pct Mn steels. Metall Trans A 12:521–530

    Article  Google Scholar 

  10. Yang D, Brown E, Matlock D, Krauss G (1985) The formation of austenite at low intercritical annealing temperatures. Metall Trans A 16:1523–1526

    Article  Google Scholar 

  11. Tokizane M, Matsumura N, Tsuzaki K et al (1982) Recrystallization and formation of austenite in deformed lath martensitic structure of low carbon steels. Metall Trans A 13:1379–1388

    Article  Google Scholar 

  12. Elsesy I, Klaar H, Hussein A (1990) Effect of intercritical temperature and cold-deformation on the kinetics. Steel Res 61:131–135

    Google Scholar 

  13. Beswick J (1984) Effect of prior cold work on the martensite-transformation in SAE-52100. Metall Trans A 15:299–306

    Article  Google Scholar 

  14. Mohanty RR, Girina OA, Fonstein NM (2011) Effect of heating rate on the austenite formation in low-carbon high-strength steels annealed in the intercritical region. Metall Mater Trans A 42A:3680–3690

    Article  Google Scholar 

  15. Bleck W, Phiu-On K (2005) Microalloying of cold-formable multi phase steel grades. In: RodriguezIbabe JM, Gutierrez I, Lopez B, IzaMendia I (eds) Microalloying for new steel processes and applications. Trans Tech Publications Ltd, Stafa-Zurich, pp 97–112

    Google Scholar 

  16. Hayami S, Furukawa T, Gondoh H, Takechi H (1979) Recent developments in formable hot and cold rolled HSLA including dual-phase sheet steels. In: Davenport AT (ed) Formable HSLA and dual-phase steels. TMS, New York, pp 167–180

    Google Scholar 

  17. Huang J, Poole WJ, Militzer M (2004) Austenite formation during intercritical annealing. Metall Mater Trans A 35A:3363–3375

    Article  Google Scholar 

  18. Petrov R, Kestens L, Houbaert Y (2001) Recrystallization of a cold rolled trip-assisted steel during reheating for intercritical annealing. ISIJ Int 41:883–890

    Article  Google Scholar 

  19. Azizi-Alizamini H, Militzer M, Poole WJ (2011) Formation of ultrafine grained dual phase steels through rapid heating. ISIJ Int 51:958–964

    Article  Google Scholar 

  20. Maruyama N, Ogawa T, Takahashi M (2007) Recrystallisation at intercritical annealing in low carbon steels. In: Kang SJL, Huh MY, Hwang NM et al (eds) Recrystallization and grain growth III, pts 1 and 2. Trans Tech Publications Ltd, Stafa-Zurich, pp 247–252

    Google Scholar 

  21. Ogawa T, Maruyama N, Sugiura N, Yoshinaga N (2010) Incomplete recrystallization and subsequent microstructural evolution during intercritical annealing in cold-rolled low carbon steels. ISIJ Int 50:469–475

    Article  Google Scholar 

  22. Peranio N, Li YJ, Roters F, Raabe D (2010) Microstructure and texture evolution in dual-phase steels: competition between recovery, recrystallization, and phase transformation. Mater Sci Eng A 527:4161–4168

    Article  Google Scholar 

  23. Copyright ADCIS S.A. And Merinex Applied Imaging Aphelion

  24. Internal report from ArcelorMittal

  25. Kirkaldy J (1958) Diffusion in multicomponent metallic systems. 3. The motion of planar phase interfaces. Can J Phys 36:917–925

    Article  Google Scholar 

  26. Coates D (1972) Diffusion-controlled precipitate growth in ternary-systems 1. Metall Trans A 3:1203–1212

    Article  Google Scholar 

  27. Atkinson C, Akbay T, Reed RC (1995) Theory for reaustenitisation from ferrite/cementite mixtures in Fe–C–X steels. Acta Metall Mater 43:2013–2031

    Article  Google Scholar 

  28. Purdy G, Ågren J, Borgenstam A et al (2011) ALEMI: a ten-year history of discussions of alloying–element interactions with migrating interfaces. Metall Mater Trans A 42:3703–3718

    Article  Google Scholar 

  29. Hultgren A (1947) Isothermal transformation of austenite. Trans Am Soc Met 39:915–1005

    Google Scholar 

  30. Serra J (1982) Image analysis and mathematical morphology. Academic Press, New York

    Google Scholar 

  31. Krebs B, Germain L, Goune M, Hazotte A (2011) Banded structures in dual-phase steels—a novel characterization method. Int J Mater Res 102:200–207

    Article  Google Scholar 

  32. Krebs B, Hazotte A, Germain L, Gouné M (2010) Quantitative analysis of banded structures in dual-phase steels. Image Anal Stereol 29:85–90

    Article  Google Scholar 

  33. Krebs B, Germain L, Hazotte A, Gouné M (2011) Banded structure in dual phase steels in relation with the austenite-to-ferrite transformation mechanisms. J Mater Sci. doi:10.1007/s10853-011-5671-9

  34. Andrade-Carozzo V, Jacques PJ (2007) Interactions between recrystallisation and phase transformations during annealing of cold rolled Nb-added TRIP-aided steels. Mater Sci Forum 539–543:4649–4654

    Article  Google Scholar 

  35. Kulakov M, Poole WJ, Militzer M (2013) The effect of the initial microstructure on recrystallization and austenite formation in a DP600 steel. Metall Mater Trans A 44:3564–3576

    Article  Google Scholar 

  36. Hutchinson CR, Fuchsmann A, Brechet Y (2004) The diffusional formation of ferrite from austenite in Fe–C–Ni alloys. Metall Mater Trans A 35A:1211–1221

    Article  Google Scholar 

  37. Purdy G, Ågren J, Borgenstam A, Bréchet Y, Enomoto M, Furuhara T, Gamsjager E, Gouné M, Hillert M, Hutchinson C, Militzer M, Zurob H (2011) ALEMI: a ten-year history of discussions of alloying–element interactions with migrating interfaces. Metall Mater Trans A 42(2011):3703–3718

    Article  Google Scholar 

  38. Viardin A (2009) Modélisation par champ de phases de la croissance de la ferrite allotriomorphe dans les aciers Fe–C–Mn. Institut National Polytechnique de Lorraine, Nancy

    Google Scholar 

  39. Pussegoda N, Tyson W, Wycliffe P, Purdy G (1984) Segregation of manganese during intercritical annealing of dual phase steels. Metall Mater Trans A 15:1499–1502

    Article  Google Scholar 

  40. Hu H, Goodman S (1970) Effect of manganese on annealing texture and strain ratio of low-carbon steels. Metall Trans 1:3057–3064

    Google Scholar 

  41. Leslie W, Plecity F, Michalak J (1961) Recrystallization of iron and iron–manganese alloys. Trans Metall Soc AIME 221:691–700

    Google Scholar 

  42. Tian Y, Kraft R (1987) Mechanisms of pearlite spheroidization. Metall Trans A 18:1403–1414

    Article  Google Scholar 

  43. Appolaire B, Gouné M (2006) Linear stability analysis of a γ′-Fe4N nitride layer growing in pure iron. Comput Mater Sci 38:126–135

    Article  Google Scholar 

  44. Zheng C, Raabe D (2013) Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: a cellular automaton model. Acta Mater 61:5504–5517

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gouné.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chbihi, A., Barbier, D., Germain, L. et al. Interactions between ferrite recrystallization and austenite formation in high-strength steels. J Mater Sci 49, 3608–3621 (2014). https://doi.org/10.1007/s10853-014-8029-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8029-2

Keywords

Navigation