Skip to main content
Log in

Manufacturing of Open-Cell Zn-22Al-2Cu Alloy Foams by a Centrifugal-Replication Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Centrifugal force was used to produce open-cell Zn-22Al-2Cu alloy foams by the replication method. Three different sizes (0.50, 0.69, and 0.95 mm) of NaCl spherical particles were used as space holders. A relatively low infiltration pressure was required to infiltrate completely the liquid metal into the three pore sizes, and it was determined based on the centrifugation system parameters. The infiltration pressure required was decreased when the diameter of the particle was increased. The porosity of the foam was increased from 58 to 63 pct, when the pore size was increased from 0.50 to 0.95 mm, while the relative density was decreased from 0.42 to 0.36. The NaCl preform was preheated to avoid the freezing and to keep the rheological properties of the melt. The centrifugal-replication method is a suitable technique for the fabrication of open-cell Zn-Al-Cu alloy foams with small pore size. The compressive mechanical properties of the open-cell Zn-22Al-2Cu foams increased when the pore size decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. P. Degisher and B. Kriszt: Handbook of Cellular Metals, Production, Processing, Applications, 1st ed., Wiley-VCH, Weinheim, 2002, p. 2.

    Book  Google Scholar 

  2. C. Gaillard, J.-F. Despois, and A. Mortensen: Mater. Sci. Eng. A, 2004, vol. 374, pp. 250–62.

    Article  Google Scholar 

  3. N. Dukhan: Metal Foams, Fundamentals and Applications, DEStech Publications Inc., 2013.

    Google Scholar 

  4. M. Sánchez, J. Rams, and A. Ureña: Compos. Part A, 2010, vol. 41, pp. 1605–11.

    Article  Google Scholar 

  5. R. Jamshidi and G. Roudini: Mater. Lett., 2012, vol. 76, pp. 233–36.

    Article  Google Scholar 

  6. Z. Ma, F. Han, J. Wei, and J. Gao: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2657–61.

    Article  Google Scholar 

  7. J. Zhou, P. Shrotriya, and W. Soboyejo: Mech. Mater., 2004, vol. 36, pp. 781–97.

    Article  Google Scholar 

  8. J. Kovacik and F. Simancik: Kovove Mater., 2004, vol. 42, pp. 79–90.

    Google Scholar 

  9. K. Kitazono and Y. Takigushi: Scripta Mater., 2006, vol. 55, pp. 501–04.

    Article  Google Scholar 

  10. K. Sekido and K. Kitazono: Mater. Sci. Forum, 2013, vol. 753, pp. 73–78.

    Google Scholar 

  11. J.D. Muñoz, A. Mendoza, E. Cabrera, G. Torres, and J.A. Montemayor: Mater. Sci., 2007, vol. 45, pp. 7617–20.

    Article  Google Scholar 

  12. J. Negrete and G. Torres: Mater. Manuf. Processes, 1995, vol. 10, pp. 785–93.

    Article  Google Scholar 

  13. S.R. Casolco, G. Dominguez, D. Sandoval, and J.E. Garay: Mater. Sci. Eng., 2007, vol. 471, pp. 28–33.

    Article  Google Scholar 

  14. Y. Siron, J. Liu, M. Wei, X. Zhu, and Y. Liu: Mater. Des., 2009, vol. 30, pp. 87–90.

    Article  Google Scholar 

  15. Y. Nishida, I. Shirayanagi, and Y. Sakai: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 4136–39.

    Google Scholar 

  16. G. Torres-Villaseñor, Y. Hua, and C. Piña-Barba: Proc. 3rd Int. Conf. on Zn-Al Alloys, Instituto de Investigaciones en Materiales, UNAM, Mexico City, 1994, pp. 89–94.

  17. J. Banhart: Progr. Mater. Sci., 2001, vol. 46, pp. 559–632.

    Google Scholar 

  18. R. Goodall, A. Marmottant, L. Salvo, and A. Mortensen: Mater. Sci. Eng. A, 2007, vol. 456, pp. 124–35.

    Article  Google Scholar 

  19. J. Liu, S. Yu, X. Zhu, M. Wei, S. Li, Y. Luo, and Y. Liu: Mater. Lett., 2008, vol. 62, pp. 683–85.

    Article  Google Scholar 

  20. A. Heydari, H. Shahverdi, and S. Elahi: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 162–69.

    Google Scholar 

  21. C. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, and M. Mabuchi: Mater. Lett., 2004, vol. 58, pp. 350–60.

    Google Scholar 

  22. N. Bekoz and E. Oktay: Mater. Sci. Eng. A, 2013, vol. 576, pp. 82–90.

    Article  Google Scholar 

  23. K.R. Mangipudi, S.W. Van Buuren, and P.R. Onck: Int. J. Solids Struct., 2010, vol. 47, pp. 2081–96.

    Article  Google Scholar 

  24. S. Yu, J. Liu, M. Wei, Y. Luo, X. Zhu, and Y. Liu: Mater. Des., 2009, vol. 30, pp. 87–90.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Institutions Consejo Nacional de Ciencia y Tecnología (CONACyT), Sistema Nacional de Investigadores (SNI), Comisión de Operación y Fomento de Actividades Académicas (COFAA), and Secretaria de Investigación y Posgrado (SIP)-Instituto Politécnico Nacional (IPN) for their permanent assistance to the Process Metallurgy Group at Escuela Superior de Ingeniería Química e Industrias Extractivas (ESIQIE)–Metallurgy and Materials Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sánchez.

Additional information

Manuscript submitted December 6, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, A., Cruz, A., Rivera, J.E. et al. Manufacturing of Open-Cell Zn-22Al-2Cu Alloy Foams by a Centrifugal-Replication Process. Metall Mater Trans A 49, 272–281 (2018). https://doi.org/10.1007/s11661-017-4390-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4390-5

Navigation