Skip to main content
Log in

Mass-scale processing of open-cell metallic foams by pressurized casting method

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Here, we report a simple and cost-effective technique for mass-scale processing of open-cell foams of metals and alloys with precise control over foam parameters (pore size, pore distribution, and strut thickness). The process involves pressurized infiltration of molten metals/alloys into salt preforms under 1.5–4 bar inert gas pressure. The preforms were fabricated from spherical particles of different salts, selected on the basis of the melting temperature of the metals/alloys. The porous metallic structures were recovered by leaching out the salt patterns. The working temperature and the applied pressure play the most vital role in determining the foam structure. The developed foams were studied with optical microscope, scanning electron microscope (SEM), and X-ray computed tomography (CT). Mechanical properties of the developed foams evaluated under quasi-static compressive loading are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams: A Design Guide (Butterworth-Heinemann, Woburn, 2000)

    Google Scholar 

  2. C. Körner, R.F. Singer, Adv. Eng. Mater. 2, 159 (2000)

    Article  Google Scholar 

  3. J. Banhart, Prog. Mater. Sci. 46, 559 (2001)

    Article  CAS  Google Scholar 

  4. K.C. Chan, S.H. Chan, Mater. Manuf. Process. 19, 407 (2004)

    Article  CAS  Google Scholar 

  5. J. Banhart, Adv. Eng. Mater. 8, 781 (2006)

    Article  CAS  Google Scholar 

  6. L.P. Lefebvre, J. Banhart, D.C. Dunand, Adv. Eng. Mater. 10, 775 (2008)

    Article  CAS  Google Scholar 

  7. Y.F. Song, L.R. Xiao, X.J. Zhao, H. Zhou, W. Zhang, L. Guo, Y.H. Wang, Mater. Manuf. Process. 31, 1046 (2016)

    Article  CAS  Google Scholar 

  8. Y. Sugimura, J. Meyer, M.Y. He, H. Bart-Smith, J. Grenstedt, A.G. Evans, Acta Mater. 45, 5245 (1997)

    Article  CAS  Google Scholar 

  9. H. Nakajima, Prog. Mater. Sci. 52, 1091 (2007)

    Article  CAS  Google Scholar 

  10. M.F. Ashby, T. Lu, Sci. China Ser. B Chem. 46, 521 (2003)

    Article  CAS  Google Scholar 

  11. J.A. Ridgeway, US Patent 3297431 (1967)

  12. W.W. Ruch, B. Kirkevag, EP Patent 0483184 (1994)

  13. M. Thomas, D. Kenny, H. Sang, CP Patent 2154246 (2004)

  14. B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, N. Wanderka, Acta Mater. 54, 1887 (2006)

    Article  CAS  Google Scholar 

  15. R.E. Raj, B.S.S. Daniel, Mater. Manuf. Process. 22, 525 (2007)

    Article  CAS  Google Scholar 

  16. D. Li, J. Li, T. Li, T. Sun, X. Zhang, G. Yao, Trans. Nonferrous Met. Soc. China 21, 346 (2011)

    Article  CAS  Google Scholar 

  17. Z. Sarajan, M. Soltani, J.K. Khabushan, Mater. Manuf. Process. 26, 1293 (2011)

    Article  CAS  Google Scholar 

  18. N.V. Anfilov, A.A. Kuznetsov, P.G. Berezhko, A.I. Tarasova, I.A. Tsareva, V.V. Mokrushin, M.V. Tsarev, I.L. Malkov, J. Alloys Compd. 645, S132 (2015)

    Article  CAS  Google Scholar 

  19. S. Akiyama, H. Ueno, K. Imagawa, A. Kitahara, S. Nagata, K. Morimoto, T. Nishikawa, M. Itoh, US Patent 4713277 (1987)

  20. Z. Song, S.R. Nutt, Mater. Sci. Eng. A 458, 108 (2007)

    Article  Google Scholar 

  21. K. Morsi, W.M. Daoush, Scripta Mater. 105, 6 (2015)

    Article  CAS  Google Scholar 

  22. L. Drenchev, J. Sobczak, S. Malinov, W. Sha, Mater. Sci. Technol. 22, 1135 (2006)

    Article  CAS  Google Scholar 

  23. Y. Liu, Y. Li, J. Wan, Front. Mech. Eng. China 2, 180 (2007)

    Article  Google Scholar 

  24. Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, K. Higashi, Adv. Eng. Mater. 2, 184 (2000)

    Article  CAS  Google Scholar 

  25. S. Dhara, P. Bhargava, J. Am. Ceram. Soc. 86, 1645 (2003)

    Article  CAS  Google Scholar 

  26. X.F. Wang, X.F. Wang, X. Wei, F.S. Han, X.L. Wang, Mater. Sci. Tech. 27, 800 (2011)

    Article  CAS  Google Scholar 

  27. S.F. Fischer, P. Schüler, C. Fleck, A. Bührig-Polaczek, Acta Mater. 61, 5152 (2013)

    Article  CAS  Google Scholar 

  28. H.A. Kuchek, US Patent 3236706 (1966)

  29. J.K. Gibson, J.R. Kreigh, US Patent 3055763 (1962)

  30. M.D.I. Zwissler, DE Patent 19725210 (1998)

  31. P.K. Rohatgi, R.Q. Guo, H. Iksan, E.J. Borchelt, A. Asthana, Mater. Sci. Eng. A 244, 22 (1998)

    Article  Google Scholar 

  32. J.A. Cornie, S.S. Cornie, R.P. Mason, M.A. Ryals, US Patent 6360809 B1 (2002)

  33. H.S. Lee, S.H. Hong, Mater. Sci. Tech. 19, 1057 (2003)

    Article  CAS  Google Scholar 

  34. P.K. Rohatgi, J.K. Kim, N. Gupta, S. Alaraj, A. Daoud, Compos. Part A Appl. Sci. 37, 430 (2006)

    Article  Google Scholar 

  35. T.P.D. Rajan, R.M. Pillai, B.C. Pai, K.G. Satyanarayana, P.K. Rohatgi, Compos. Sci. Technol. 67, 3369 (2007)

    Article  CAS  Google Scholar 

  36. A. Bálint, A. Szlancsik, Mater. Sci. Forum 812, 2 (2015)

    Article  Google Scholar 

  37. L. Ma, Z. Song, D. He, Scripta Mater. 41, 785 (1999)

    Article  CAS  Google Scholar 

  38. J.M. Vihtelic, P.D. Jackson, J.E. Kresta, K.C. Frisch, US Patent 6481490 (2002)

  39. L.P. Zhang, Y.Y. Zhao, J. Compos. Mater. 41, 2105 (2007)

    Article  CAS  Google Scholar 

  40. J.F. Despois, A. Marmottant, L. Salvo, A. Mortensen, Mater. Sci. Eng. A 462, 68 (2007)

    Article  Google Scholar 

  41. J.S. Park, S.K. Hyun, S. Suzuki, H. Nakajima, Metall. Mater. Trans. A 40, 406 (2009)

    Article  Google Scholar 

  42. A. Jinnapat, A. Kennedy, Metals 1, 49 (2011)

    Article  CAS  Google Scholar 

  43. J.F. Wang, Y.S. Su, X.L. Gong, Adv. Mater. Res. 853, 125 (2014)

    Article  Google Scholar 

  44. J. Baumeister, DE Patent 4018360 (1990)

  45. M. Gauthier, L.P. Lefebvre, Y. Thomas, M.N. Bureau, Mater. Manuf. Process. 19, 793 (2004)

    Article  CAS  Google Scholar 

  46. N. Jha, D.P. Mondal, J.D. Majumdar, A. Badkul, A.K. Jha, A.K. Khare, Mater. Des. 47, 810 (2013)

    Article  CAS  Google Scholar 

  47. B.C. Allen, M.W. Mote, A.M. Sabroff, US Patent 3087807 (1963)

  48. J. Baumeister, H. Schrader, US Patent 5151246 (1992)

  49. J. Baumeister, J. Banhart, M. Weber, DE Patent 4426627 (1995)

  50. C.J. Yu, H.H. Eifert, J. Banhart, J. Baumeister, Mater. Res. Innovat. 2, 181 (1998)

    Article  CAS  Google Scholar 

  51. A. Irretier, J. Banhart, Acta Mater. 53, 4903 (2005)

    Article  CAS  Google Scholar 

  52. G.L. Hao, F.S. Han, W.D. Li, J. Porous Mat. 16, 251 (2009)

    Article  CAS  Google Scholar 

  53. N. Michailidis, F. Stergioudi, A. Tsouknidas, E. Pavlidou, Mater. Sci. Eng. A 528, 1662 (2010)

    Article  Google Scholar 

  54. K. Harada, M. Ishii, K. Watanabe, S. Yamanaka, US Patent 5640669 (1997)

  55. C.E. Fanning, US Patent 5759400 (1998)

  56. Y. Kamigata, T. Yoshida, K. Susa, T. Uchida, H. Hiratsuka, US Patent 5881353 (1999)

  57. W.A. Pruyn, US Patent 5584983 (1997)

  58. H.C. Shin, J. Dong, M. Liu, Adv. Mater. 15, 1610 (2003)

    Article  CAS  Google Scholar 

  59. S. Cherevko, C. Chung, Electrochem. Commun. 13, 16 (2011)

    Article  CAS  Google Scholar 

  60. N. Ucciardello, S. Guarino, V. Tagliaferri, F. Bertocchi, Patent WO2014141071 A1 (2014)

  61. W. Jiang, S.S. Sundarram, W. Li, Manuf. Lett. 2, 118 (2014)

    Article  CAS  Google Scholar 

  62. B.H. Bui, S. Kim, J. Electrochem. Soc. 162, D15 (2015)

    Article  CAS  Google Scholar 

  63. J. Babjak, V.A. Ettel, V. Paserin, US Patent 4957543 (1990)

  64. D.T. Queheillalt, D.D. Hass, D.J. Sypeck, H.N.G. Wadley, J. Mater. Res. 16, 1028 (2001)

    Article  CAS  Google Scholar 

  65. http://www.alloyfoam.com/

  66. S. Biswas, B. Soni, Indian Patent 2015. Application No: 742/DEL/2015

  67. A.H. Brothers, R. Scheunemann, J.D. DeFouw, D.C. Dunand, Scripta Mater. 52, 335 (2005)

    Article  CAS  Google Scholar 

  68. H. Kanahashi, T. Mukai, T.G. Nieh, T. Aizawa, K. Higashi, Mater. Trans. 43, 2548 (2002)

    Article  CAS  Google Scholar 

  69. C. Xiao-qing, W. Zhi-hua, M.A. Hong-wei, Z. Long-mao, Y. Gui-tong, T. Nonferr, Metal Soc. 16, 351 (2006)

    Google Scholar 

  70. N. Michailidis, F. Stergioudi, A. Tsouknidas, E. Pavlidou, Mater. Sci. Eng. A 528, 1662 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Department of Science and Technology, Government of India (Project # SR/FTP/PS-214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Biswas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, B., Biswas, S. Mass-scale processing of open-cell metallic foams by pressurized casting method. J Porous Mater 24, 29–37 (2017). https://doi.org/10.1007/s10934-016-0233-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0233-9

Keywords

Navigation