Skip to main content
Log in

In Situ Investigation of the Evolution of Lattice Strain and Stresses in Austenite and Martensite During Quenching and Tempering of Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Energy dispersive synchrotron X-ray diffraction was applied to investigate in situ the evolution of lattice strains and stresses in austenite and martensite during quenching and tempering of a soft martensitic stainless steel. In one experiment, lattice strains in austenite and martensite were measured in situ in the direction perpendicular to the sample surface during an austenitization, quenching, and tempering cycle. In a second experiment, the sin2 ψ method was applied in situ during the austenite-to-martensite transformation to distinguish between macro- and phase-specific micro-stresses and to follow the evolution of these stresses during transformation. Martensite formation evokes compressive stress in austenite that is balanced by tensile stress in martensite. Tempering to 748 K (475 °C) leads to partial relaxation of these stresses. Additionally, data reveal that (elastic) lattice strain in austenite is not hydrostatic but hkl dependent, which is ascribed to plastic deformation of this phase during martensite formation and is considered responsible for anomalous behavior of the 200 γ reflection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The bulk elastic modulus of austenite, B γ, and of martensite, B α, calculated from References 41 and 40 are 184 and 167 GPa, respectively. From Reference 42, for Fe-15 pct Cr-5 pct Ni B γ = 164 GPa and is not significantly affected by the presence of interstitials.[43] This indicates that Reference 41 most likely overestimated the stiffness of austenite. No accurate information is available to evaluate the value of B α from Reference 40.

  2. It should be noted that the Eshelby/Kröner model for the present case is an approximation, as it assumes elastic interaction of crystals with identical elastic constants, while the present material is two phase with different elastic constants for the two phases.

  3. The multiplicity of the various hkls was not taken into account, implying that all reflections were equally weighted.

  4. Note that the relative difference between the effects of C and N (in wt pct) on the unit cell volume of martensite is <3 pct, and can be neglected within the experimental accuracy indicated in Reference 15.

References

  1. P.J. Withers, W.M. Stobbs, and O.B. Pedersen: Acta metall., 1989, vol. 37, pp. 3061–84.

    Article  Google Scholar 

  2. O.B. Pedersen: Acta Metall., 1983, vol. 31, pp. 1795–808.

    Article  Google Scholar 

  3. P.J. Withers and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 366–75.

    Article  Google Scholar 

  4. V. Hauk: Structural and Residual Stress Analysis by Non-destructive Methods: EvaluationApplicationAssessment, Elsevier Science, New York, 1997.

    Google Scholar 

  5. P.J. Withers and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 355–65.

    Article  Google Scholar 

  6. G.B. Olson and W.S. Owen: Martensite, ASM International, Materials Park, OH, 1992.

    Google Scholar 

  7. Z. Nishiyama: Martensitic Transformation, Academic, New York, 1978.

    Google Scholar 

  8. J.W. Christian: Proc. Int. Conf. Martensitic Transform., 1979, pp. 220–33.

  9. H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 2004, vol. 378, pp. 34–39.

    Article  Google Scholar 

  10. G.E. Totten, M. Howes, and T. Inoue: Handbook of Residual Stress and Deformation of Steel, ASM International, Materials Park, OH, 2002.

    Google Scholar 

  11. V.I. Gridnev and V.I. Trefilov: Dokl. Akad. Nauk SSSR, 1957, vol. 116, pp. 60–62.

    Google Scholar 

  12. N. Ridley, H. Stuart, and L. Zwell: Trans. AIME, 1969, vol. 245, pp. 1834–36.

    Google Scholar 

  13. K. Ya Golovchiner: Fiz. Metal. Metalloved., 1974, vol. 37, pp. 363–68.

    Google Scholar 

  14. Y. Tanaka and K. Shimizu: Trans. JIM, 1980, vol. 21, pp. 42–50.

    Article  Google Scholar 

  15. L. Cheng, A. Bottger, T.H. de Keijser, and E.J. Mittemeijer: Scripta Mater., 1990, vol. 24, pp. 509–14.

    Article  Google Scholar 

  16. M. Villa, F.B. Grumsen, K. Pantleon, and M.A.J. Somers: Scripta Mater., 2012, vol. 67, pp. 621–24.

    Article  Google Scholar 

  17. M. Villa, K. Pantleon, and M.A.J. Somers: J. Alloys Compd., 2013, vol. 577, pp. S543–48.

    Article  Google Scholar 

  18. M. Villa, K. Pantleon, and M.A.J. Somers: Acta Mater., 2014, vol. 65, pp. 383–92.

    Article  Google Scholar 

  19. J. Epp: Adv. Mater. Res., 2014, vol. 996, pp. 525–31.

    Article  Google Scholar 

  20. J. Epp: Proc. IFHTSE 2016, 2016, pp. 440–47.

  21. N. Nakada, Y. Ishibashi, T. Tsuchiyama, and S. Takaki: Acta Mater., 2016, vol. 110, pp. 95–112.

    Article  Google Scholar 

  22. V.M. Yeshov and M.L. Oslon: Fiz. Metal. Metalloved., 1968, vol. 25, pp. 874–81.

    Google Scholar 

  23. V.M. Yeshov and M.L. Oslon: Fiz. Metal. Metalloved., 1972, vol. 33, pp. 215–17.

    Google Scholar 

  24. E. Scheil and E. Saftig: Arch. Eisenhuttenw. 1957, vol. 28, pp. 49–51.

    Google Scholar 

  25. K. Ullakko and V.G. Gavriljuk: Acta Metall. Mater., 1992, vol. 40, pp. 2471–82.

    Article  Google Scholar 

  26. K. Ullakko: Aging of Iron-Based Martensites at Low-Temperatures. Ph.D. Thesis, Helsinki, 1992.

  27. D. San Martin, E. Jimenez-Melero, J.A. Duffy, V. Honkimaki, S. van der Zwaag, and N.H. van Dijk: J. Appl. Crystallogr., 2012, vol. 45, pp. 748–57.

    Article  Google Scholar 

  28. T. Kakeshita, T. Saburi, K. Kind, and S. Endo: Phase Transit., 1999, vol. 70, pp. 65–113.

    Article  Google Scholar 

  29. A.N. Ezeilo, G.A. Webster, P.J. Webster, and X. Wang: Physica B, 1992, vol. 180–181, pp. 1044–46.

    Article  Google Scholar 

  30. B. Clausen, T. Lorentzen, and T. Leffers: Acta. Mater., 1998, vol. 46, pp. 3087–98.

    Article  Google Scholar 

  31. E.C. Oliver: The Generation of Internal Stresses in Single and Two Phase Materials. Ph.D. Thesis, Manchester, 2002.

  32. B. Clausen, T. Leffers, and T. Lorentzen: Acta. Mater., 2003, vol. 51, pp. 6181–88.

    Article  Google Scholar 

  33. F. Niessen, M. Villa, D. Apel, O. Keßler, M. Reich, J. Hald, and M.A.J. Somers: Mater. Sci. Forum, 2016, vol. 879, pp. 1381–86.

    Article  Google Scholar 

  34. F. Niessen, M. Villa, J. Hald, and M.A.J. Somers: Mater. Des., 2017, vol. 116, pp. 8–15.

    Article  Google Scholar 

  35. Ch. Genzel, I.A. Denks, and M. Klaus: Mater. Sci. Forum, 2006, vol. 524–525, pp. 193–98.

    Article  Google Scholar 

  36. B.C. Giessen and G.E. Gordon: Science, 1968, vol. 159, pp. 973–75.

    Article  Google Scholar 

  37. Ch. Genzel, I.A. Denks, and M. Klaus: Modern Diffraction Methods, Wiley-VCH, Weinheim, 2013, pp. 127–54.

    Book  Google Scholar 

  38. E.S.U. Laine: J. Phys. F, 1978, vol. 8, pp. 1343–48.

    Article  Google Scholar 

  39. Y.S. Touloukian: Thermophysical Properties of Matter. The TPRC Data Series 12: Thermal Expansion Metallic Elements and Alloys, IFI/Plenum, New York, 1975.

    Google Scholar 

  40. K.-H. Hellwege and A.M. Hellwege, eds.: Landoldt-Börnstein, New Series, Group III, vol. 11, Springer, Berlin, 1979.

    Google Scholar 

  41. H. Behnken: Berechnung und Ermittlung der röntgenographischen Elastizitätskonstanten sowie der Mikro- und Makro-Spannungen heterogener und texturierter Werkstoffe. Ph.D. Thesis, RWTH Aachen, 1992.

  42. A. Teklu, H. Ledbetter, S. Kim, L.A. Boatner, M. McGuire, and V. Keppens: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3149–54.

    Article  Google Scholar 

  43. H.M. Ledbetter and M.W. Austin: Mater. Sci. Eng., 1985, vol. 70, pp. 143–49.

    Article  Google Scholar 

  44. E. Kröner: Z. Phys., 1958, vol. 151, pp. 504–18.

    Article  Google Scholar 

  45. J.D. Eshelby: Proc. R. Soc. Lond. A, 1957, vol. 241, pp. 376–96.

    Article  Google Scholar 

  46. T. Gnaupel-Herold and A. Creuziger: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3594–600.

    Article  Google Scholar 

  47. A. Bojack, L. Zhao, P.F. Morris, and J. Sietsma: Mater. Charact., 2012, vol. 7, pp. 77–86.

    Article  Google Scholar 

  48. C.M. Wayman: Iron and Steel Institute—Special Report, 1965, pp. 153–63.

  49. J. Pak, D.W. Suh, and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2012, vol. 43, pp. 4520–24.

    Article  Google Scholar 

  50. J.A. Klostermann and W.G. Burgers: Acta Metall., 1964, vol. 12, pp. 355–60.

    Article  Google Scholar 

  51. J.A. Klostermann: J. Less Common Met., 1972, vol. 28, pp. 75–94.

    Article  Google Scholar 

  52. G. Faria, J. Escobar, and A.J. Ramirez: Proc. Int. Conf. Solid–Solid Phase Transform. Inorg. Mater. 2015, 2015, pp. 637–38.

  53. A. Beneteau, E. Aeby-Gautier, G. Geandier, P. Weisbecker, A. Redjaimia, and B. Appolaire: Acta Mater., 2014, vol. 81, pp. 30–40.

    Article  Google Scholar 

  54. A.J.C. Wilson: Acta Crystallogr., 1952, vol. 5, pp. 318–22.

    Article  Google Scholar 

  55. J.W.L. Pang, T.M. Holden, and T.E. Mason: J. Strain Anal. Eng. Des., 1998, vol. 33, pp. 373–83.

    Article  Google Scholar 

Download references

Acknowledgments

M. Klaus, D. Apel, and Ch. Genzel from Helmholtz Zentrum für Materialien und Energie (HZME) are acknowledged for their enthusiastic support during the activity at the HZB-BESSY II Synchrotron Facility and during subsequent data analysis. The activity was supported by the European Commission under the 7th Framework Program through the ‘Research Infrastructure’ action of the ‘Capacities’ Programme, CALIPSO (Grant No. 312284) and by the Danish Natural Science Research Council via Danscatt. The Danish Council for Independent Research (G.R. Grant DFF-4005-00223) and the Danish Underground Consortium are gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Villa.

Additional information

Manuscript submitted February 14, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villa, M., Niessen, F. & Somers, M.A.J. In Situ Investigation of the Evolution of Lattice Strain and Stresses in Austenite and Martensite During Quenching and Tempering of Steel. Metall Mater Trans A 49, 28–40 (2018). https://doi.org/10.1007/s11661-017-4387-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4387-0

Navigation