Skip to main content

Advertisement

Log in

Development of High-Strength High-Temperature Cast Al-Ni-Cr Alloys Through Evolution of a Novel Composite Eutectic Structure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Aiming to develop high-strength Al-based alloys with high material index (strength/density) for structural application, this article reports a new class of multiphase Al alloys in the Al-Ni-Cr system that possess impressive room temperature and elevated temperature (≥ 200 °C) mechanical properties. The ternary eutectic and near eutectic alloys display a complex microstructure containing intermetallic phases displaying hierarchically arranged plate and rod morphologies that exhibit extraordinary mechanical properties. The yield strengths achieved at room temperatures are in excess of 350 MPa with compressive plastic strains of more than 30 pct (without fracturing) for these alloys. The stability of the complex microstructure also leads to a yield stress of 191 ± 8 to 232 ± 5 MPa at 250 °C. It is argued that the alloys derive their high strength and impressive plasticity through synergic effects of refined nanoeutectics of two different morphologies forming a core shell type of architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. J.R. Davis: Aluminum and Aluminum Alloys, 1993.

  2. T.E. George and S.D. Mackenzie: Handbook of Aluminum: Volume 2: Alloy Production and Materials Manufacturing, CRC Press, Boca Raton, FL, 2003.

  3. W.C. Hagel: Corrosion, 1965, vol. 21, pp. 316–26.

    Article  Google Scholar 

  4. G.C. Wood: Oxid. Met., 1970, vol. 2, pp. 11–57.

    Article  Google Scholar 

  5. R. Prescott and M.J. Graham: Oxid. Met., 1992, vol. 38, pp. 233–54.

    Article  Google Scholar 

  6. W.R. Osório, L.C. Peixoto, M.V. Canté, and A. Garcia: Electrochimica Acta, 2010, vol. 55, pp. 4078–85.

    Article  Google Scholar 

  7. W.R. Osório, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto, and A. Garcia: Electrochimica Acta, 2012, vol. 69, pp. 371–78.

    Article  Google Scholar 

  8. H.E. Hu, L. Zhen, L. Yang, W.Z. Shao, and B.Y. Zhang: Mater. Sci. Eng. A, 2008, vol. 488, pp. 64–71.

    Article  Google Scholar 

  9. E.R. Wang, X.D. Hui, and G.L. Chen: Mater. Des., 2011, vol. 32, pp. 4333–40.

    Article  Google Scholar 

  10. H.E. Hu, X. Wang, and L. Deng: Mater. Sci. Eng. A, 2013, vol. 576, pp. 45–51.

    Article  Google Scholar 

  11. I.R. Hughes and H. Jones: J. Mater. Sci., 1976, vol. 11, pp. 1781–93.

    Article  Google Scholar 

  12. J.D. Cotton and M.J. Kaufman: Metall. Trans. A, 1991, vol. 22A, pp. 927–34.

    Article  Google Scholar 

  13. P. Gilgien, A. Zryd, and W. Kurz: Acta Metall. Mater., 1995, vol. 43, pp. 3477–87.

    Article  Google Scholar 

  14. G.A. Chadwick: Progr. Mater. Sci., 1963, vol. 12, pp. 99–182.

    Article  Google Scholar 

  15. B. Cantor and G.A. Chadwick: J. Cryst. Growth, 1974, vol. 23, pp. 12–20.

    Article  Google Scholar 

  16. B. Cantor and G.A. Chadwick: J. Cryst. Growth, 1975, vol. 30, pp. 101–08.

    Article  Google Scholar 

  17. C.S. Tiwary, D.R. Mahapatra, and K. Chattopadhyay: Appl. Phys. Lett., 2012, vol. 101, p. 171901.

    Article  Google Scholar 

  18. B. Cantor, G.J. May, and G.A. Chadwick: J. Mater. Sci., 1973, vol. 8, pp. 830–38.

    Article  Google Scholar 

  19. B. Cantor and G.A. Chadwick: J. Mater. Sci., 1975, vol. 10, pp. 578–88.

    Article  Google Scholar 

  20. J.H. Tregilgas and T.Z. Kattamis: J. Mater. Sci., 1976, vol. 11, pp. 1239–45.

    Article  Google Scholar 

  21. A. Misra, Z.L. Wu, M.T. Kush, and R. Gibala: Mater. Sci. Eng. A, 1997, vol. 239–240, pp. 75–87.

    Article  Google Scholar 

  22. A. Misra, Z.L. Wu, M.T. Kush, and R. Gibala: Philos. Mag. A, 1998, vol. 78, pp. 533–50.

    Article  Google Scholar 

  23. J.M. Park, N. Mattern, U. Kühn, J. Eckert, K.B. Kim, W.T. Kim, K. Chattopadhyay, and D.H. Kim: J. Mater. Res., 2009, vol. 24, pp. 2605–09.

    Article  Google Scholar 

  24. J.M. Park, K.B. Kim, D.H. Kim, N. Mattern, R. Li, G. Liu, and J. Eckert: Intermetallics, 2010, vol. 18, pp. 1829–33.

    Article  Google Scholar 

  25. S.W. Sohn, J.M. Park, W.T. Kim, and D.H. Kim: J. Alloys Compd., 2012, vol. 541, pp. 14–17.

    Article  Google Scholar 

  26. G.J. Fan, H. Choo, P.K. Liaw, and E.J. Lavernia: Acta Mater., 2006, vol. 54, pp. 1759–66.

    Article  Google Scholar 

  27. C.S. Tiwary, S. Kashyap, and K. Chattopadhyay: Scripta Mater., 2014, vol. 93, pp. 20–23.

    Article  Google Scholar 

  28. C.S. Tiwary, S. Kashyap, D.H. Kim, and K. Chattopadhyay: Mater. Sci. Eng. A, 2015, vol. 639, pp. 359–69.

    Article  Google Scholar 

  29. J. Das, K.B. Kim, F. Baier, W. Löser, and J. Eckert: Appl. Phys. Lett., 2005, vol. 87, p. 161907.

    Article  Google Scholar 

  30. L.C. Zhang, J. Das, H.B. Lu, C. Duhamel, M. Calin, and J. Eckert: Scripta Mater., 2007, vol. 57, pp. 101–04.

    Article  Google Scholar 

  31. J.H. Han, K.B. Kim, S. Yi, J.M. Park, S.W. Sohn, T.E. Kim, D.H. Kim, J. Das, and J. Eckert: Appl. Phys. Lett., 2008, vol. 93, p. 141901.

    Article  Google Scholar 

  32. D.N. Compton, L.A. Cornish, and M.J. Witcomb: J. Alloys Compd., 2001, vols. 317–318, pp. 372–78.

    Article  Google Scholar 

  33. J.D. Hunt and K.A. Jackson: Trans. TMS-AIME, 1966, vol. 236, pp. 843–52.

    Google Scholar 

  34. K.A. Jackson and J.D. Hunt: Trans. TMS-AIME, 1966, vol. 236, pp. 1129–42.

    Google Scholar 

  35. L. Liu, J.F. Li, and Y.H. Zhou: Acta Mater., 2009, vol. 57, pp. 1536–45.

    Article  Google Scholar 

  36. P. Pandey, C.S. Tiwary, and K. Chattopadhyay: J. Electron. Mater., 2016, vol. 45, pp. 5468–77.

    Article  Google Scholar 

  37. K.B. Kim, J. Das, W. Xu, Z.F. Zhang, and J. Eckert: Acta Mater., 2006, vol. 54, pp. 3701–11.

    Article  Google Scholar 

  38. J.M. Park, D.H. Kim, K.B. Kim, and J. Eckert: Appl. Phys. Lett., 2010, vol. 97, p. 251915.

    Article  Google Scholar 

  39. J.T. Kim, S.H. Hong, H.J. Park, Y.S. Kim, G.H. Park, J.-Y. Park, N. Lee, Y. Seo, J.M. Park, and K.B. Kim: Mater. Des., 2015, vol. 76, pp. 190–95.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Science and Technology, India, for providing the financial support, and the Advanced Facility for Microscopy and Microanalysis at IISc, Bangalore, for making available the microscopy facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Tiwary.

Additional information

Manuscript submitted May 3, 2017.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3876 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P., Kashyap, S., Tiwary, C.S. et al. Development of High-Strength High-Temperature Cast Al-Ni-Cr Alloys Through Evolution of a Novel Composite Eutectic Structure. Metall Mater Trans A 48, 5940–5950 (2017). https://doi.org/10.1007/s11661-017-4369-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4369-2

Navigation