Skip to main content

Advertisement

Log in

High-Strength Al-Zn-Cu-Based Alloy Synthesized by High-Pressure Die-Casting Method

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-strength alloys of Al-xZn-3Cu (x = 20, 30, 40 wt pct) are developed for die-casting process. The maximum tensile strength of the developed alloy is 435 MPa, with a stain to fracture of ~ 4 pct. Microstructural investigation shows that the grain size of α-Al gradually decreases and the area of the Zn-rich region increases as the amount of Zn increases. Local symmetry investigation reveals that the major phase of α-Al contains very fine nanoprecipitations of Zn phase (<10 nm), with a very small amount of strain along {1\( \bar{1} \)0}. In addition, the Zn-rich region of the grain boundary has a very complex microstructure. This study discusses the effect of the microstructure of the developed Al alloys on the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. [1] H. Ye: J. Mater. Eng. Perform., 2003, vol. 12, pp. 288-97.

    Article  CAS  Google Scholar 

  2. [2] J.A. Taylor: Proc. Mater. Sci., 2012, vol. 1, pp. 19-33.

    Article  CAS  Google Scholar 

  3. [3] Z.X. Liang, B. Ye, L. Zhang, Q.G. Wang, W.Y. Yang and Q.D. Wang: Mater. Lett., 2013, vol. 97, pp. 104-7.

    Article  CAS  Google Scholar 

  4. [4] M. Djurdjevic, H. Jiang and J. Sokolowski: Mater. Charact., 2001, vol. 46, pp. 31-8.

    Article  CAS  Google Scholar 

  5. [5] W.K. Krajewski, J. Buraś, P.K. Krajewski, A.L. Greer, K. Faerber and P. Schumacher: Mater. Today. Proc., 2015, vol. 2, 4978-83.

    Article  Google Scholar 

  6. [6] D. Dumont, A. Deschamps and Y. Brechet: Mater. Sci. Eng. A, 2003, vol. 356, pp. 326-36.

    Article  Google Scholar 

  7. [7] R. Li, R. Li and Y. Bai: Trans. Nonferr. Met. Soc. China, 2010, vol. 20, pp. 59-63.

    Article  CAS  Google Scholar 

  8. [8] H. Yu, M. Wang, Y. Jia, Z. Xiao, C. Chen, Q. Lei, Z. Li, W. Chen, H. Zhang, Y. Wang, C. Cai: J. Alloy Compd., 2014, vol. 601, pp. 120–125.

    Article  CAS  Google Scholar 

  9. [9] S. Z. Han, E.-A. Choi, H. W. Park, S. H. Lim, J. Lee, J. H. Ahn, N. –M. Hwang, K. Kim: Sci.Rep. 7, 12286 (2017)

    Article  Google Scholar 

  10. [10] Ž. Skoko, S. Popović and G. Štefanić: Croat. Chem. Acta, 2009, vol. 82, pp. 405-20.

    CAS  Google Scholar 

  11. [11] D. Mirkovic, J. Grobner and R. Schmid-Fetzer: Acta Mater., 2008, vol. 56, pp. 5214-22.

    Article  CAS  Google Scholar 

  12. [12] S.S. Shin, K.M. Lim and I.M. Park: Mater.Sci. Eng. A, 2017, vol. 679, pp 340-9.

    Article  CAS  Google Scholar 

  13. [13] S.S. Shin, K.M. Lim and I.M. Park: J. Alloy Compd., 2016, vol. 671, pp. 517–26.

    Article  CAS  Google Scholar 

  14. T. Shanmugasundaram, B.S. Murty and V. SubramanyaSarma (2006) Scr. Mater. 54: 2013-17.

    Article  CAS  Google Scholar 

  15. [15] H. Yang, S. Ji and Z. Fan: Mater. Des. 2015, vol. 85, pp. 823-32.

    Article  CAS  Google Scholar 

  16. [16] S. Otarawanna and A.K. Dahle: Fundamentals of Aluminium Metallurgy, 1st ed., Woodhead Publishing, Oxford, UK, 2011, pp. 141-54.

    Book  Google Scholar 

  17. [17] K.-H. Kim and J.-M. Zuo: Ultramicroscopy, 2013, vol. 124, pp. 71-6.

    Article  CAS  Google Scholar 

  18. [18] J.C.H. Spence and J.M. Zuo: Electron Microdiffraction, Plenum Press, New York, NY, 1992, pp. 296-322.

    Book  Google Scholar 

  19. [19] L. Holzer, F. Indutnyi, P.H. Gasser, B. Munch and M. Wegmann: J. Microsc., 2004, vol. 216, pp. 84-95.

    Article  CAS  Google Scholar 

  20. [20] M. Timpel, N. Wanderka, B.S. Murty and J. Banhart: Acta Mater., 2010, vol. 58, pp. 6600-8.

    Article  CAS  Google Scholar 

  21. [21] G. Han and X. Liu: Acta Mater., 2016, vol. 114, pp. 54–66.

    Article  CAS  Google Scholar 

  22. [22] K.H. Kim and J.M. Zuo: Acta Crystall., 2014, vol. A70, 583-90.

    Google Scholar 

  23. V. Raghavan (2007) J. Phase Equilib. Differ. 28(2): 183-188.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate Young-Woo Jeong, Dr. Young-Woon Byeon, and Dr. Jae-Pyoung Ahn from Advanced Analysis Center, Korea Institute of Science and Technology, for their support of the 3D tomography analysis. This work was supported by the Regional Specialized Industry Development Program (Project No: R0006348), the Civil-Military Technology Cooperation Program (Project No: 18-CM-MA-16), and also partially supported by the R&D program of Korea Institute of Industrial Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyou-Hyun Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 23, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, SS., Won, SJ., So, H. et al. High-Strength Al-Zn-Cu-Based Alloy Synthesized by High-Pressure Die-Casting Method. Metall Mater Trans A 51, 6630–6639 (2020). https://doi.org/10.1007/s11661-020-06011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06011-9

Navigation