Skip to main content
Log in

Laser Metal Deposition of the Intermetallic TiAl Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Laser metal deposition of the commercial intermetallic Ti-47Al-2Cr-2Nb alloy was investigated. A large number of experiments were conducted under controlled atmosphere by changing the processing parameters to manufacture a series of beads, thin walls, and massive blocks. Optimal process parameters were successfully found to prevent cracking which is generally observed in this brittle material due to built-up residual stresses during fast cooling. These non-equilibrium cooling conditions tend to generate ultra-fine and metastable structures exhibiting high microhardness values, thus requiring post-heat treatments. The latter were successfully used to restore homogeneous lamellar or duplex microstructures and to relieve residual stresses. Subsequent tensile tests enabled us to validate the soundness and homogeneity of the Intermetallic TiAl alloy. Finally, a higher mechanical performance was achieved for the LMD material with respect to cast+HIP and EBM counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Y.-W. Kim, Mater. Sci. Eng. A 192(193), 519–33 (1995)

    Article  Google Scholar 

  2. D.M. Dimiduk, Mater. Sci. Eng., A 263, 181–88 (1999)

    Article  Google Scholar 

  3. C.T. Liu, J.H. Schneibel, P.J. Maziasz, J.L. Wright, D.S. Easton, Intermetallics 4, 429–40 (1996)

    Article  Google Scholar 

  4. H. Clemens, H. Kestler, Adv. Eng. Mater. 2(9), 551–70 (2000)

    Article  Google Scholar 

  5. F. Appel, M. Ochring, J.D.H. Paul, C. Klinkenberg, T. Carneiro, Intermetallics 12(7–9), 798–02 (2004)

    Google Scholar 

  6. D. Hu, X. Wu, M.H. Loretto, Intermetallics 13, 914–19 (2005)

    Article  Google Scholar 

  7. Y.-W. Kim, D.M. Dimiduk, JOM 43(8), 40–47 (1991)

    Article  Google Scholar 

  8. S.-C. Huang, in Structural Intermetallics, ed. by R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, M.V. Nathal (The Minerals, Metals & Materials Society, Warrendale, 1993), pp. 299–307

    Google Scholar 

  9. M. Thomas, J.L. Raviart, F. Popoff, Intermetallics 13, 944–51 (2005)

    Article  Google Scholar 

  10. C. Tönnes, J. Rösler, R. Baumann, M. Thumann, in Structural Intermetallics, ed. by R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, M.V. Nathal (The Minerals, Metals & Materials Society, Warrendale, 1993), pp. 241–245

    Google Scholar 

  11. D. Srivastava, I.T.H. Chang, M.H. Loretto, in Gamma Titanium Aluminides, ed. by Y.-W. Kim, D.M. Dimiduk, M.H. Loretto (TMS, Warrendale, 1999), pp. 265–72

    Google Scholar 

  12. M.H. Loretto, A.B. Godfrey, D. Hu, P.A. Blenkinsop, I.P. Jones, T.T. Cheng, Intermetallics 6, 663–66 (1998)

    Article  Google Scholar 

  13. L. Gélébart, M. Bornert, T. Bretheau, D. Caldemaison, Matér. Tech. 92(1–2), 69–75 (2004)

    Article  Google Scholar 

  14. X. Wu, Intermetallics 14, 1114–22 (2006)

    Article  Google Scholar 

  15. M. Yamaguchi, H. Inui, in Structural Intermetallics, ed. by R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, M.V. Nathal (The Minerals, Metals & Materials Society, Warrendale, 1993), pp. 127–142

    Google Scholar 

  16. M. Thomas, S. Naka, in Gamma Titanium Aluminides, ed. by Y.-W. Kim, D.M. Dimiduk, M.H. Loretto (TMS, Warrendale, PA, 1999), pp. 633–640

    Google Scholar 

  17. U. Hofmann, W. Blum, Intermetallics 7, 351–61 (1999)

    Article  Google Scholar 

  18. J.M. Ruppert: PhD Thesis, Ecole des Mines de Paris, 22 March 2002.

  19. S. Naka and M. Thomas: Pratique des Matériaux Industriels, Les références DUNOD, 1999.

  20. Z.M. Sun, H. Hashimoto, Intermetallics 11, 825–34 (2003)

    Article  Google Scholar 

  21. T. Voisin, J.-P. Monchoux, L. Durand, N. Karnatak, M. Thomas, A. Couret, Adv. Eng. Mater. 17(10), 1408–13 (2015)

    Article  Google Scholar 

  22. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, J. Mater. Sci. Technol. 28(1), 1–14 (2012)

    Article  Google Scholar 

  23. S.S. Babu, L. Love, R. Dehoff, W. Peter, T.R. Watkins, S. Pannala, MRS Bull. 40, 1154–61 (2015)

    Article  Google Scholar 

  24. S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, C. Badini, Intermetallics 19, 776–81 (2011)

    Article  Google Scholar 

  25. J. Schwerdtfeger, C. Körner, Intermetallics 49, 29–35 (2014)

    Article  Google Scholar 

  26. S. Biamino, M. Terner, A. Penna, U. Ackelid, F. Pelissero, S. Sabbadini, P. Gennaro, P. Fino, M. Pavese, and C. Badini: 4th International Workshop on Titanium Aluminides, Sept. 2011, Nüremberg, Germany

  27. M. Griffith, C. Atwood, L. Harwell, E. Schlienger, M. Ensz, J.E. Smugereskeym, T. Romero, D. Green, and D. Reckaway: Proceedings of the International Congress on Applications of Lasers and Electro-Optics (ICALEO’98), E. Beyer et al, eds., Laser Institute of America, Orlando, Florida, vol. 1, 1998, pp. 1–7.

  28. B. Cárcel, A. Serrano, J. Zambrano, V. Amigó, A.C. Cárcel, Phys. Proc. 56, 284–93 (2014)

    Article  Google Scholar 

  29. J.H. Moll, E. Whitney, C.F. Yolton, U. Habel, in Gamma Titanium Aluminides, ed. by Y.-W. Kim, D.M. Dimiduk, M.H. Loretto (TMS, Warrendale, 1999), pp. 255–263

    Google Scholar 

  30. D. Srivastava, D. Hu, I.T.H. Chang, M.H. Loretto, Intermetallics 7, 1107–12 (1999)

    Article  Google Scholar 

  31. D. Srivastava, I.T.H. Chang, M.H. Loretto, Intermetallics 9, 1003–13 (2001)

    Article  Google Scholar 

  32. X.D. Zhang, C. Brice, D.W. Mahaffey, H. Zhang, K. Schwendner, D.J. Evans, H.L. Fraser, Scripta Mater. 44, 2419–24 (2001)

    Article  Google Scholar 

  33. Y.C. Liu, Z.Q. Guo, T. Wang, D.S. Xu, G.S. Song, G.C. Yang, Y.H. Zhou, J. Mater. Process. Technol. 108, 394–97 (2001)

    Article  Google Scholar 

  34. H.P. Qu, H.M. Wang, Mater. Sci. Eng. A 466, 187–94 (2007)

    Article  Google Scholar 

  35. H.P. Qu, P. Li, S.Q. Zhang, A. Li, H.M. Wang, Mater. Des. 31, 2201–10 (2010)

    Article  Google Scholar 

  36. S.-C. Huang: US Patent, No. 4,879,092, 7 Nov. 1989.

  37. M. Charpentier, D. Daloz, A. Hazotte, E. Aeby-Gautier, Matér. Tech. 92(1–2), 39–50 (2004)

    Article  Google Scholar 

  38. M.C. Chaturvedi, Q. Xu, N.L. Richards, J. Mater. Process. Technol. 118(1–3), 74–78 (2001)

    Article  Google Scholar 

  39. J. Liu, M. Dahmen, V. Ventzke, N. Kashaev, R. Poprawe, Intermetallics 40, 65–70 (2013)

    Article  Google Scholar 

  40. J. Maisonneuve: PhD Thesis, ENSMP, 27 Nov 2008.

  41. P. Aubry, T. Malot, P. Peyre, V. Ji, V. Kottmann-Rexerodt, M. Thomas, T. Vilaro, and C. Colin: Proceedings of the 29 th International Congress on Applications of Lasers and Electro-Optics, W.M. Steen et al, eds., Anaheim, CA, USA, 26–30 Sept 2010, pp. 317–325.

  42. T. Vilaro: PhD Thesis, Ecole des Mines de Paris, 20 April 2011.

  43. M. Lamirand, J.L. Bonnantien, G. Ferrière, S. Guérin, J.P. Chevalier, Metall. Mater. Trans. A 37A, 2369–78 (2006)

    Article  Google Scholar 

  44. F. Perdrix, M.F. Trichet, J.L. Bonnentien, M. Cornet, J. Bigot, Intermetallics 9, 147–55 (2001)

    Article  Google Scholar 

  45. D. Srivastava, I.T.H. Chang, M.H. Loretto, Mater. Des. 21, 425–33 (2000)

    Article  Google Scholar 

  46. W. Ge, F. Lin, and C. Guo: Proceedings of the 25th Annual International Solid Freeform Fabrication (SFF) Symposium, D. Bourell et al, eds., Laboratory for Freeform Fabrication and University of Texas at Austin, USA, 2014, pp. 500–13.

  47. D. Cormier, O. Harrysson, T. Mahale, and H. West: Res. Lett. Mater. Sci., 2007, pp. 1–4.

  48. W. Ge, C. Guo, F. Lin, Proc. Eng. 81, 1192–97 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the FRAE (Fondation de Recherche en Aéronautique et Espace) institution for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Thomas.

Additional information

Manuscript submitted August 12, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, M., Malot, T. & Aubry, P. Laser Metal Deposition of the Intermetallic TiAl Alloy. Metall Mater Trans A 48, 3143–3158 (2017). https://doi.org/10.1007/s11661-017-4042-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4042-9

Keywords

Navigation