Skip to main content
Log in

A Comparative Study of Microstructures and Mechanical Behavior of Laser Metal Deposited and Electron Beam Melted Ti-6Al-4V

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructures and mechanical properties of Ti-6Al-4V fabricated using laser metal deposition (LMD) and electron beam melting (EBM) were investigated and compared. The hardness, strength and work hardening exponent (n) of the LMD samples are superior to that of EBM samples. The EBM samples are more ductile, exhibit resistance to rapid plastic strain localization and have uniform hardness throughout the build. A detailed microstructural characterization was conducted for both alloys before and after the tensile tests. The differences in mechanical behavior of the two samples originate from their distinct dislocation densities within α and the relative proportions of Widmanstätten and colony type arrangements of the α+β laths, which in turn are an outcome of the distinct cooling profiles in the two additive manufacturing methods. On the basis of these results, strategies to improve the mechanical properties of both alloys are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

taken from a and ß laths. (Left) Illustration of the build direction and bottom, middle and top layers

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Since both samples exhibit negligible post-necking plasticity, their corresponding εf and εu are the same.

References

  1. D.T. Pham and R.S. Gault, A Comparison of Rapid Prototyping Technologies, Int. J. Mach. Tools Manuf., 1998, 38(10–11), 1257–1287.

    Article  Google Scholar 

  2. X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong and C.K. Chua, Graded Microstructure and Mechanical Properties of Additive Manufactured Ti-6Al-4V via Electron Beam Melting, Acta Mater., 2015, 97, 1–16. https://doi.org/10.1016/j.actamat.2015.06.036

    Article  CAS  Google Scholar 

  3. L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe and R.B. Wicker, Microstructures and Mechanical Properties of Electron Beam-Rapid Manufactured Ti-6Al-4V Biomedical Prototypes Compared to Wrought Ti-6Al-4V, Mater. Charact, 2009, 60(2), 96–105. https://doi.org/10.1016/j.matchar.2008.07.006

    Article  CAS  Google Scholar 

  4. A. Paolini, S. Kollmannsberger and E. Rank, Additive Manufacturing in Construction: A Review on Processes, Applications, and Digital Planning Methods, Addit. Manuf., 2019, 30, 100894. https://doi.org/10.1016/j.addma.2019.100894

    Article  Google Scholar 

  5. M. Seifi, A. Salem, J. Beuth, O. Harrysson and J.J. Lewandowski, Overview of Materials Qualification Needs for Metal Additive Manufacturing, Jom, 2016, 68(3), 747–764.

    Article  Google Scholar 

  6. S.S. Al-Bermani, M.L. Blackmore, W. Zhang and I. Todd, The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2010, 41(13), 3422–3434.

    Article  CAS  Google Scholar 

  7. Y. Kok, X. Tan, S.B. Tor and C.K. Chua, Fabrication and Microstructural Characterisation of Additive Manufactured Ti-6Al-4V Parts by Electron Beam Melting, Virtual Phys. Prototyp., 2015, 10(1), 13–21.

    Article  Google Scholar 

  8. N. Hrabe and T. Quinn, Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti-6Al-4V) Fabricated Using Electron Beam Melting (EBM), Part 1: Distance from Build Plate and Part Size, Mater. Sci. Eng. A, 2013, 573, 264–270. https://doi.org/10.1016/j.msea.2013.02.064

    Article  CAS  Google Scholar 

  9. L.E. Murr, S.M. Gaytan, F. Medina, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez and R.B. Wicker, Characterization of Ti-6Al-4V Open Cellular Foams Fabricated by Additive Manufacturing Using Electron Beam Melting, Mater. Sci. Eng. A, 2010, 527(7–8), 1861–1868. https://doi.org/10.1016/j.msea.2009.11.015

    Article  CAS  Google Scholar 

  10. S. Liu and Y.C. Shin, Additive Manufacturing of Ti6Al4V Alloy: A Review, Mater. Des., 2019, 164, 107552. https://doi.org/10.1016/j.matdes.2018.107552

    Article  CAS  Google Scholar 

  11. M. Thomas, T. Malot, P. Aubry, C. Colin, T. Vilaro and P. Bertrand, The Prospects for Additive Manufacturing of Bulk TiAl Alloy, Mater. High Temp., 2016, 33(4–5), 571–577.

    Article  CAS  Google Scholar 

  12. L.D. Shi Bofei, Z. Anfeng and Q. Baolu, Influence of Heat Accumulation on Microstructure and Property of Ti-6Al-4V in Laser Direct Forming, Laser Technol., 2016, 40(1), 29–32. https://doi.org/10.7510/jgjs.issn.1001-3806.2016.01.007

    Article  CAS  Google Scholar 

  13. J. Wang, H.P. Tang, K. Yang, N. Liu, L. Jia and M. Qian, Selective Electron Beam Manufacturing of Ti-6Al-4V Strips: Effect of Build Orientation Columnar Grain Orientation, and Hot Isostatic Pressing on Tensile Properties, J Miner MEt Mater Soc., 2018, 70(5), 638–643. https://doi.org/10.1007/s11837-018-2794-3

    Article  CAS  Google Scholar 

  14. C. Pirozzi, S. Franchitti, R. Borrelli, G. Diodati and G. Vattasso, Experimental Study on the Porosity of Electron Beam Melting-Manufactured Ti6Al4V, J. Mater. Eng. Perform., 2019, 28(5), 2649–2660. https://doi.org/10.1007/s11665-019-04038-7

    Article  CAS  Google Scholar 

  15. P. Bindu and S. Thomas, Estimation of Lattice Strain in ZnO Nanoparticles: X-Ray Peak Profile Analysis, J. Theor. Appl. Phys., 2014, 8, 123–134. https://doi.org/10.1007/s40094-014-0141-9

    Article  Google Scholar 

  16. W. He, W. Jia, H. Liu, H. Tang, X. Kang and Y. Huang, Research on Preheating of Titanium Alloy Powder in Electron Beam Melting Technology, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met, Mater. Eng., 2011, 40(12), 2072–2075.

    CAS  Google Scholar 

  17. V. Chastand, P. Quaegebeur, W. Maia and E. Charkaluk, Comparative Study of Fatigue Properties of Ti-6Al-4V Specimens Built by Electron Beam Melting (EBM) and Selective Laser Melting (SLM), Mater. Charact., 2018, 143, 76–81.

    Article  CAS  Google Scholar 

  18. Y. Zhai, H. Galarraga and D.A. Lados, Microstructure, Static Properties, and Fatigue Crack Growth Mechanisms in Ti-6Al-4V Fabricated by Additive Manufacturing: LENS and EBM, Eng. Fail. Anal., 2016, 69, 3–14.

    Article  CAS  Google Scholar 

  19. N. Hrabe, T. Gnäupel-Herold and T. Quinn, Fatigue Properties of a Titanium Alloy (Ti–6Al–4V) Fabricated via Electron Beam Melting (EBM): Effects of Internal Defects and Residual Stress, Int. J. Fatigue, 2017, 94, 202–210.

    Article  CAS  Google Scholar 

  20. L.M. Wang, H.C. Lin and C.J. Tsai, Characterization and Mechanism of Α2-Ti3Al and γ-TiAl Precipitation in Ti-6Al-4V Alloy Following Tungsten Arc Welding, Key Eng. Mater., 2012, 520, 320–329.

    Article  CAS  Google Scholar 

  21. L.E. Murr, S.M. Gaytan, M.I. Lopez, E. Martinez, F. Medina and R.B. Wicker, Metallographic Characterization of Additive-Layer Manufactured Products by Electron Beam Melting of Ti-6Al-4V Powder, Practical Metallography, 2009, 46(9), 442–453. https://doi.org/10.3139/147.110036

    Article  CAS  Google Scholar 

  22. L. Facchini, E. Magalini, P. Robotti and A. Molinari, Microstructure and Mechanical Properties of Ti-6Al-4V Produced by Electron Beam Melting of Pre-Alloyed Powders, Rapid Prototyp. J., 2009, 15(3), 171–178.

    Article  Google Scholar 

  23. B. Baufeld and O. Van Der Biest, Mechanical Properties of Ti-6Al-4V Specimens Produced by Shaped Metal Deposition, Sci. Technol. Adv. Mater., 2009, 10(1), 015008. https://doi.org/10.1088/1468-6996/10/1/015008

    Article  CAS  Google Scholar 

  24. Y.M. Ren, X. Lin, X. Fu, H. Tan, J. Chen and W.D. Huang, Microstructure and Deformation Behavior of Ti-6Al-4V Alloy by High-Power Laser Solid Forming, Acta Mater., 2017, 132, 82–95.

    Article  CAS  Google Scholar 

  25. G.E. Dieter and D. Bacon, Mechanical Metallurgy SI Metric Edition, J. Franklin Inst., 1988, 766.

  26. A. Ducato, L. Fratini, M. La Cascia and G. Mazzola, An Automated Visual Inspection System for the Classification of the Phases of Ti-6Al-4V Titanium Alloy, Lect. Notes Comput. Sci. (including Subser Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2013, 8048, 362–369.

    Google Scholar 

  27. G. Lütjering, Influence of Processing on Microstructure and Mechanical Properties of (α + β) Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1–2), 32–45.

    Article  Google Scholar 

  28. T. Ahmed and H.J. Rack, Phase Transformations during Cooling in α + β Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1–2), 206–211.

    Article  Google Scholar 

  29. J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang and X. Zeng, Formation and Control of Martensite in Ti-6Al-4V Alloy Produced by Selective Laser Melting, Mater. Des., 2016, 108, 308–318. https://doi.org/10.1016/j.matdes.2016.06.117

    Article  CAS  Google Scholar 

  30. B. Appolaire, L. Héricher and E. Aeby-Gautier, Modelling of Phase Transformation Kinetics in Ti Alloys-Isothermal Treatments, Acta Mater., 2005, 53(10), 3001–3011.

    Article  CAS  Google Scholar 

  31. Y. Mantani and M. Tajima, Phase Transformation of Quenched Α″ Martensite by Aging in Ti-Nb Alloys, Mater. Sci. Eng. A, 2006, 438–440, 315–319. https://doi.org/10.1016/j.msea.2006.02.180

    Article  CAS  Google Scholar 

  32. L. Parry, I.A. Ashcroft and R.D. Wildman, Understanding the Effect of Laser Scan Strategy on Residual Stress in Selective Laser Melting through Thermo-Mechanical Simulation, Addit. Manuf., 2016, 12, 1–15.

    Google Scholar 

  33. A. Safdar, L.Y. Wei, A. Snis and Z. Lai, Evaluation of Microstructural Development in Electron Beam Melted Ti-6Al-4V, Mater. Charact., 2012, 65, 8–15. https://doi.org/10.1016/j.matchar.2011.12.008

    Article  CAS  Google Scholar 

  34. K. Sato, H. Matsumoto, K. Kodaira, T.J. Konno and A. Chiba, Phase Transformation and Age-Hardening of Hexagonal Α′ Martensite in Ti-12 Mass%V-2 Mass%Al Alloys Studied by Transmission Electron Microscopy, J. Alloys Compd., 2010, 506(2), 607–614. https://doi.org/10.1016/j.jallcom.2010.07.127

    Article  CAS  Google Scholar 

  35. X. Tan, Y. Kok, Y.J. Tan, G. Vastola, Q.X. Pei, G. Zhang, Y.W. Zhang, S.B. Tor, K.F. Leong and C.K. Chua, An Experimental and Simulation Study on Build Thickness Dependent Microstructure for Electron Beam Melted Ti-6Al-4V, J. Alloys Compd., 2015, 646, 303–309. https://doi.org/10.1016/j.jallcom.2015.05.178

    Article  CAS  Google Scholar 

  36. P. Vora, K. Mumtaz, I. Todd and N. Hopkinson, AlSi12 In-Situ Alloy Formation and Residual Stress Reduction Using Anchorless Selective Laser Melting, Addit. Manuf., 2015, 7, 12–19. https://doi.org/10.1016/j.addma.2015.06.003

    Article  CAS  Google Scholar 

  37. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia and M. Qian, Additive Manufacturing of Strong and Ductile Ti-6Al-4V by Selective Laser Melting via in Situ Martensite Decomposition, Acta Mater., 2015, 85, 74–84. https://doi.org/10.1016/j.actamat.2014.11.028

    Article  CAS  Google Scholar 

  38. H. Gong, K. Rafi, H. Gu, G.D. Janaki Ram, T. Starr and B. Stucker, Influence of Defects on Mechanical Properties of Ti-6Al-4V Components Produced by Selective Laser Melting and Electron Beam Melting, Mater. Des., 2015, 86, 545–554. https://doi.org/10.1016/j.matdes.2015.07.147

    Article  CAS  Google Scholar 

  39. P. Kumar, O. Prakash and U. Ramamurty, Micro-and Meso-Structures and Their Influence on Mechanical Properties of Selectively Laser Melted Ti-6Al-4V, Acta Mater., 2018, 154, 246–260. https://doi.org/10.1016/j.actamat.2018.05.044

    Article  CAS  Google Scholar 

  40. P. Kumar and U. Ramamurty, Microstructural Optimization through Heat Treatment for Enhancing the Fracture Toughness and Fatigue Crack Growth Resistance of Selective Laser Melted Ti–6Al–4V Alloy, Acta Mater., 2019, 169, 45–59. https://doi.org/10.1016/j.actamat.2019.03.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate Dr. Gang Chen and Prof. Anfeng Zhang for providing the LMD and EMB Ti-6Al-4V samples, respectively. This work was supported by the CSC Master program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Lakshmi Narayan or Wei-Zhong Han.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, M., Narayan, R.L., Zhang, DL. et al. A Comparative Study of Microstructures and Mechanical Behavior of Laser Metal Deposited and Electron Beam Melted Ti-6Al-4V. J. of Materi Eng and Perform 31, 542–551 (2022). https://doi.org/10.1007/s11665-021-06197-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06197-y

Keywords

Navigation