Skip to main content
Log in

Effects of interstitial oxygen on microstructure and mechanical properties of Ti-48Al-2Cr-2Nb with fully lamellar and duplex microstructures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of added oxygen in the range of 1000 to 4000 wt ppm on the microstructures of a Ti-48Al-2Cr-2Nb alloy has been investigated and compared to the microstructures for a high-purity alloy. For specimens cooled from theα phase, interstitial oxygen stabilizes the lamellar microstructure with respect toγ grains, with higher than equilibrium values for theα 2 volume fraction. For specimens cooled from theα +γ phase field, the lamellar microstructure still tends to be favored by oxygen, but it is found that the phase volume fractions are not significantly different from equilibrium values. This suggests that interstitial O essentially reduces the kinetics of theα toα +γ transformation. Thus, interstitial oxygen will have a strong effect on microstructures obtained by continuous cooling fromα, but significantly less on those, such as the duplex microstructure, obtained by long treatment in theα +γ phase field. In general, increased O content is well correlated with reduced ductility. Finally, the role of interstitial oxygen on this phase transformation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Dimiduk:Mater. Sci. Eng. A, 1999, vol. 263, pp. 281–88.

    Article  Google Scholar 

  2. Y.-W. Kim:Materials Research Society Symp. Proc., Materials Research Society, Pittsburgh, PA, 1991, vol. 213, pp. 777–94.

    Google Scholar 

  3. S.C. Huang and E.L. Hall:Metall. Trans. A, 1991, vol. 22A, pp. 2619–27.

    CAS  Google Scholar 

  4. D.W. McKee and S.C. Huang:Corr. Sci., 1992, vol. 33, pp. 1899–914.

    Article  CAS  Google Scholar 

  5. S.C. Huang: inStructural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 299–307.

    Google Scholar 

  6. J. Beddoes, W. Wallace, and L. Zhao:Int. Mater. Rev., 1995, vol. 40, pp. 197–217.

    CAS  Google Scholar 

  7. C. Ouchi, H. Iizumi, and S. Mitao:Mater. Sci. Eng. A, 1998, vol. 243, pp. 186–95.

    Article  Google Scholar 

  8. A. Menand, A. Huguet, and A. Nerac-Partaix:Acta Mater., 1996, vol. 12, pp. 4729–37.

    Article  Google Scholar 

  9. A. Menand, H. Zapolsky-Tatarenko, and A. Nerac-Partaix:Mater. Sci. Eng. A, 1998, vol. 250, pp. 55–64.

    Article  Google Scholar 

  10. A. Menand, E. Cadel, C. Pareige, and D. Blavette:Ultramicroscopy, 1999, vol. 78, pp. 63–72.

    Article  CAS  Google Scholar 

  11. E.L. Hall and S.C. Huang: inMicrostructure/Property Relationships in Titanium Aluminides and Alloys, Y.-W. Kim and R.R. Boyer, eds., TMS, Warrendale, PA, 1991, pp. 47–64.

    Google Scholar 

  12. W. Lefebvre, A. Menand, A. Loiseau, and D. Blavette:Mater. Sci. Eng. A, 2002, vol. 327, pp. 40–46.

    Article  Google Scholar 

  13. B.-J. Lee and N. Saunders:Z. Metallkd., 1997, vol. 88, pp. 152–61.

    CAS  Google Scholar 

  14. F. Perdrix: Ph.D. Thesis, Université Paris-Sud, France, 2000.

    Google Scholar 

  15. F. Perdrix, M. Cornet, J. Bigot, and J.-P. Chevalier:J. Phys IV France, 2000, vol. 10, Pr6, pp. 15–20.

    Google Scholar 

  16. J. Bigot:C.R. Acad. Sci. Paris, 1974, vol. 279, Ser. C, pp. 67–69.

    CAS  Google Scholar 

  17. J. Bigot: Ph.D. Thesis, Faculté des Sciences de Paris, Paris, 1969.

    Google Scholar 

  18. M. Lamirand: Ph.D. Thesis, Université Paris XII, Créteil, 2004.

    Google Scholar 

  19. J.-P. Dallas: CECM-CNRS, Vitry, private communication, 1998.

  20. F. Perdrix, M.F. Trichet, J.L. Bonnentien, M. Cornet, and J. Bigot:Intermetallics, 1999, vol. 7, pp. 1323–28.

    Article  CAS  Google Scholar 

  21. N. Saunders: inGamma Titanium Aluminides, Y.-W. Kim, D.M. Dimiduk, and M.H. Loretto, eds., TMS, Warrendale, PA, 1999, pp. 183–88.

    Google Scholar 

  22. F.B. Pickering:Physical Metallurgy and the Design of Steels, Applied Science Publishers, London, 1978.

    Google Scholar 

  23. C. Angelier and J. Béchet: InBeta Titanium Alloys, A. Vassel, D. Eylon, and Y. Combres, eds., Revue de Métallurgie, Paris, 1994, no. 8, pp. 127–33.

    Google Scholar 

  24. M. Göken, M. Kempfand, and W.D. Nix:Acta Mater., 2001, vol. 49, pp. 903–11.

    Article  Google Scholar 

  25. P.M. Hazzledine and D.M. Dimiduk: inGamma Titanium Aluminides, Y.-W. Kim, D.M. Dimiduk, and M.H. Loretto, eds., TMS, Warrendale, PA, 1999, pp. 481–87.

    Google Scholar 

  26. H. Inui, K. Kishida, M. Misaki, M. Kobayashi, Y. Shirai, and M. Yamagushi:Phil. Mag. A, 1995, vol. 72, pp. 1609–31.

    CAS  Google Scholar 

  27. R.C. Pond, P. Shang, T.T. Cheng, and M. Aindow:Acta Mater., 2000, vol. 48, pp. 1047–53.

    Article  CAS  Google Scholar 

  28. Y. Mishin and C. Herzig:Acta Mater., 2000, vol. 28, pp. 589–623.

    Article  Google Scholar 

  29. D.E. Larsen: United State Patent no. 5,685,924 (Nov. 11, 1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamirand, M., Bonnentien, J.L., Guérin, S. et al. Effects of interstitial oxygen on microstructure and mechanical properties of Ti-48Al-2Cr-2Nb with fully lamellar and duplex microstructures. Metall Mater Trans A 37, 2369–2378 (2006). https://doi.org/10.1007/BF02586211

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02586211

Keywords

Navigation