Skip to main content

Advertisement

Log in

Effect of Nb Addition to Ti-Bearing Super Martensitic Stainless Steel on Control of Austenite Grain Size and Strengthening

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The role of Nb in normalized and tempered Ti-bearing 13Cr5Ni2Mo super martensitic stainless steel is investigated through in-depth characterization of the bimodal chemistry and size of Nb-rich precipitates/atomic clusters and Nb in solid solution. Transmission electron microscopy and atom probe tomography are used to analyze the samples and clarify precipitates/atom cluster interactions with dislocations and austenite grain boundaries. The effect of 0.1 wt pct Nb addition on the promotion of (Ti, Nb)N-Nb(C,N) composite precipitates, as well as the retention of Nb in solution after cooling to room temperature, are analyzed quantitatively. (Ti, Nb)N-Nb(C,N) composite precipitates with average diameters of approximately 24 ± 8 nm resulting from epitaxial growth of Nb(C,N) on pre-existing (Ti,Nb)N particles, with inter-particle spacing on the order of 205 ± 68 nm, are found to be associated with mean austenite grain size of 28 ± 10 µm in the sample normalized at 1323 K (1050 °C). The calculated Zener limiting austenite grain size of 38 ± 13 µm is in agreement with the experimentally observed austenite grain size distribution. 0.08 wt pct Nb is retained in the as-normalized condition, which is able to promote Nb(C, N) atomic clusters at dislocations during tempering at 873 K (600 °C) for 2 hours, and increases the yield strength by 160 MPa, which is predicted to be close to maximum increase in strengthening effect. Retention of solute Nb before tempering also leads to it preferentially combing with C and N to form Nb(C, N) atom clusters, which suppresses the occurrence of Cr- and Mo-rich carbides during tempering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

References

  1. B. Qin, Z.Y. Wang and Q.S. Sun: Mater. Charact., 2008, vol. 59, pp. 1096–1100.

    Article  Google Scholar 

  2. Y.Y. Song, D.H. Ping, F.X. Yin, X.Y. Li and Y.Y. Li: Mater. Sci. Eng. A, 2012, vol. 527, pp. 614-18.

    Article  Google Scholar 

  3. P.D. Bilmes, C.L. Llorente, C.M. Méndez and C.A. Gervasi: Corrosion. Sci., 2009, vol. 51, pp. 876-81.

    Article  Google Scholar 

  4. P.D. Bilmes, M. Solari and C.L. Llorente: Mater. Charact., 2001, vol. 46, pp. 285-96.

    Article  Google Scholar 

  5. X.P. Ma, L.J. Wang, C.M. Liu and S.V. Subramanian: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6812 – 18.

    Article  Google Scholar 

  6. Xiaoping Ma, Lijun Wang, Sundaresa Subramanian and Chunming Liu: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4475-86.

    Article  Google Scholar 

  7. E. Ladanova, J.K. Solberg and T. Rogne: Corrosion Eng. Sci. Technol., 2006, vol. 41, pp. 143–51.

    Article  Google Scholar 

  8. B. Gault, M. Moody, J. Cairney and S.P. Ringer: Atom Probe Microscopy, Springer Science, New York, 2012.

    Book  Google Scholar 

  9. B.P. Geiser, D.J. Larson, E. Oltman, S.S. Gerstl, D.A. Reinhard, T.F. Kelly and T.J. Prosa: Microsc. Microanal., 2009, vol. 15 (S2), pp. 292–93.

    Article  Google Scholar 

  10. B. Gault, D. Haley, F. de Geuser, M.P. Moody, E.A. Marquis, D.J. Larson and B.P. Geiser: Ultramicrosc., 2011, vol. 111, pp. 448–57.

    Article  Google Scholar 

  11. B. Gault, M.P. Moody, F. de Geuser, G. Tsafnat, A. La Fontaine, L.T. Stephenson, D. Haley and S.P. Ringer: J. Appl. Phys., 2009, 105:034913.

    Article  Google Scholar 

  12. M. Hillert and L.I. Staffanson: Acta Chemica Scandinavica, 1970, vol. 24, pp. 3618–26.

    Article  Google Scholar 

  13. H. Zou: Ph.D. thesis, McMaster University, Canada, 1991.

  14. L. Ryde: Mater. Sci. Tech., 2006, vol. 22, pp. 1297–1306.

    Article  Google Scholar 

  15. T. Gladman and F.B. Pickering: Yield, Flow and Fracture of Polycrystals, Applied Science Publishers, London, 1982, pp. 141-98.

    Google Scholar 

  16. S.V. Subramanian, F. Boratto, J.J. Jonas, C.M. Sellars: Proc. of Int. Symp. on Microalloyed Bar and Forging Steels, 1990, pp. 120–36.

  17. S.G. Hong, K.B. Kang and C.G. Park: Scr. Mater., 2002, vol. 46, pp. 163-68.

    Article  Google Scholar 

  18. T. Gladman: Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, U.K., 1997, pp. 82–87.

    Google Scholar 

  19. M. Kuzmina, M. Herbig, D. Ponge, S. Sandlobes and D. Raabe: Sci., 2015, vol. 349, pp. 1080–83.

    Article  Google Scholar 

  20. G.D.W. Smith, D. Hudson, P.D. Styman and C.A. Williams: Philos. Mag., 2013, vol. 93, pp. 3726–40.

    Article  Google Scholar 

  21. C.A. Williams, J.M. Hyde, G.D.W. Smith and E.A. Marquis: J. Nucl. Mater., 2011, vol. 412, pp. 100–05.

    Article  Google Scholar 

  22. B. Gault, M.P. Moody, J.M. Cairney and S.P. Ringer: Mater. Today, 2012, vol. 15, pp. 378–86.

    Article  Google Scholar 

  23. O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437–44.

    Google Scholar 

  24. P. Felfer, A. Ceguerra, S. Ringer and J. Cairney: Ultramicrosc., 2013, vol. 132, pp. 100–06.

    Article  Google Scholar 

  25. P. Maugis and K. Hoummada: Scr. Mater., 2016, vol.120, pp. 90–93.

    Article  Google Scholar 

  26. F. Danoix, E. Bémont, P. Maugis and D. Blavette: Adv. Eng. Mater., 2006, vol. 8, pp. 1202-05.

    Article  Google Scholar 

  27. A. Deschamps, F. Danoix, F. De Geuser, T. Epicier, H. Leitner and M. Perez: Mater. Lett., 2011, vol.65, pp. 2265–68.

    Article  Google Scholar 

  28. M. Perez, E. Courtois, D. Acevedo, T. Epicier and P. Maugis: Mater. Sci. Forum, 2007, vol. 539-543, pp. 4196-4201.

    Article  Google Scholar 

  29. Bémont E. PhD. Rouen, Universite´ de Rouen, France, 2003.

  30. E. Bémont, E. Cadel, P. Maugis, D. Blavette: Surf. Interface Anal., 2004, 36:585–88.

    Article  Google Scholar 

  31. M.F. Ashby: 1 st Riso Int. Symp. on Metallurgy and Materials Science on Recrystallization and grain Growth in Multi-Phase Particle Containing Materials, 1980, pp. 325–36.

  32. G.S. Rohrer: Trans. AIME, 1948, vol. 175, pp. 15–51, by C.S. Smith: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1063–100.

  33. J.W. Cahn: Acta Matell., 1962, vol. 10, pp. 789-98.

    Article  Google Scholar 

  34. H.S. Zurob, G. Zhu, S.V. Subramanian, G.R. Purdy, C.R. Hutchinson and Y. Brechet: ISIJ Int., 2005, vol. 45, pp. 713-22.

    Article  Google Scholar 

  35. P. Gong, E.J. Palmiere and W.M. Rainforth: Acta Mater., 2015, vol. 97, pp. 392-403.

    Article  Google Scholar 

  36. M. Maalekian, R. Radis, M. Militzer, A. Moreau and W.J. Poole: Acta Mater., 2012, vol. 60, pp. 1015–26.

    Article  Google Scholar 

  37. C. Fossaert, G. Rees, T. Maurickx and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 21-30.

    Article  Google Scholar 

  38. S.V. Subramanian, X. Ma, K. Rehman: Proc. Energy Mater., Xi’an China, 2014.

  39. M.T. Nagata, J.G. Speer and D.K. Matlock: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3099-3110.

    Article  Google Scholar 

  40. B. Dutta, E.J. Palmiere and C.M. Sellars: Acta Mater., 2001, vol. 49, pp. 785–94.

    Article  Google Scholar 

  41. F. Perrard, A. Deschamps and P. Maugis: Acta Mater., 2007, vol. 55, pp. 1255–66.

    Article  Google Scholar 

  42. F. Perrard, A. Deschamps, F. Bley, P. Donnadieu and P. Maugis: J. Appl. Crystallogr., 2006, vol. 39, pp. 473-82.

    Article  Google Scholar 

  43. K.Y. Xie, T. Zheng, J.M. Cairney, H. Kaul, J.G. Williams, F.J. Barbaro, C.R. Killmore and S.P. Ringer: Scr. Mater., 2012, vol. 66, pp. 710-13.

    Article  Google Scholar 

  44. T. Gladman: Mater. Sci. and Technol., 1999, vol. 15, pp. 30-36.

    Article  Google Scholar 

  45. M.F. Ashby: On the Orowan stress, in: A.S. Argon (Ed.), Physics of Strength and Plasticity, MIT Press, Cambridge, 1969, pp.113-31.

    Google Scholar 

  46. A.J. Breen, K.Y. Xie, M.P. Moody, B. Gault, H.W. Yen, C.C. Wong, J.M. Cairney, and S.P. Ringer: Microsc. Microanal., 2014, vol. 20, pp. 1100-10.

    Article  Google Scholar 

  47. S.L. Shrestha, K.Y. Xie, C. Zhu, S.P. Ringer, C. Killmore, K. Carpenter, H. Kaul, J.G. Williams and J.M. Cairney: Mater. Sci. Eng. A, 2013, vol. 568, pp. 88–95.

    Article  Google Scholar 

  48. S.L. Shrestha, K.Y. Xie, S.P. Ringer, K.R. Carpenter, D.R. Smith, C.R. Killmore and J.M. Cairney: Scr. Mater., 2013, vol. 69, pp. 481–84.

    Article  Google Scholar 

  49. A.G. Kostryzhev, A. Al Shahrani, C. Zhu, J.M. Cairney, S.P. Ringer, C.R. Killmore and E.V. Pereloma: Mater. Sci. Eng. A, 2014, vol. 607, pp. 226-35.

    Article  Google Scholar 

  50. A.J. Ardell: Metall. Trans. A, 1985, vol. 16A, pp. 2131-65.

    Article  Google Scholar 

  51. E.V. Pereloma, A. Shekhter, M.K. Miller and S.P. Ringer: Acta Mater., 2004, vol. 52, pp. 5589–5602.

    Article  Google Scholar 

  52. E.V. Pereloma, R.A. Stohr, M.K. Miller and S.P. Ringer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3069-75.

    Article  Google Scholar 

  53. S.P. Ringer: Mater. Sci. Forum, 2006, vol. 519-521, pp. 25-34.

    Article  Google Scholar 

Download references

Acknowledgments

Grateful thanks are expressed to Dr. Gianluigi Botton, Dr. Glynis de Silveira, and Dr. Andreas Korinek for their help on TEM-EELs characterization of the steel sample, and to Dr. Lijun Wang for help on steel sample preparation. The funding support from CBMM, Brazil is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Ma.

Additional information

Manuscript submitted November 14, 2016.

Appendices

Appendix A

$$ f = \frac{{V_{\text{MN}} }}{{V_{\text{MN}} + V_{\text{Fe}} }}, $$
(A.1)

where V MN is the volume of precipitated MN and V Fe is the volume of ferrite. The volume V of a given mole X of a material can be calculated as

$$ V = X\frac{{N_{\text{a}} }}{{N_{\text{u}} }}V_{\text{u}}, $$
(A.2)

where X is mole of the material; N a is the Avogadro’s number; N u is the number of atoms per unit cell of the materials (N u is 4 for MN precipitate and austenite Fe, and 2 for ferritic Fe, respectively); V u is the volume of the unit cell of the material and cube of the lattice parameter for MN. (Lattice parameter: 0.359 nm for austenite Fe, 0.286 nm for ferrite Fe, 0.425 nm for TiN, 0.443 nm for NbC)

$$ X_{\text{MN}} = X_{\text{M}} + X_{\text{N}} ,\quad {\text{where}}\;X_{\text{M}} = \frac{{m_{\text{M}} }}{{P_{\text{M}} }},\quad X_{\text{N}} = \frac{{m_{\text{N}} }}{{P_{\text{N}} }}, $$
(A.3)

where m is mass of a material and P is the atomic weight of the material.

For assumption of stoichiometric ratio between M and N, X M = X N.

$$ V_{\text{MN}} { = }\left( {\frac{{m_{\text{M}} }}{{P_{\text{M}} }} + \frac{{m_{\text{N}} }}{{P_{\text{N}} }}} \right)\frac{{N_{\text{a}} }}{{N_{\text{u}} }}V_{\text{u}} { = 2}\left( {\frac{{m_{\text{M}} }}{{P_{\text{M}} }}} \right)\frac{{N_{\text{a}} }}{{N_{{{\text{u}}_{\text{MN}} }} }}V_{{{\text{u}}_{\text{MN}} }} ,V_{\text{Fe}} = \frac{{m_{\text{Fe}} }}{{P_{\text{Fe}} }}\frac{{N_{\text{a}} }}{{N_{{{\text{u}}_{\text{Fe}} }} }}V_{{{\text{u}}_{\text{Fe}} }} , $$
(A.4)

Therefore, volume fraction of MN can be calculated by substituting all values in Eq. [A.1].

Appendix B

The Ashby–Orowan equation can be expressed as

$$ \Delta \sigma_{1} = \frac{{0. 8\,{\text{MGb}}}}{{ 2\pi \sqrt { 1 { - }\upsilon } \lambda }}\ln \left( {\frac{x}{2b}} \right), $$
(B.1)

where M is the Taylor factor, taken as 2.75; υ is the Poisson’s ratio, taken as 0.293; G is the Shear modulus of low carbon steel, 79,600 MPa; b is the Burger’s vector, 0.248 nm; λ is the inter-spacing of particles on slip plane.

$$ \lambda = \frac{ 1}{ 2}\sqrt {\frac{ 2}{ 3}} \left( {\sqrt {\frac{\pi }{f}} - 2} \right)d $$
(B.2)
$$ x = \sqrt {\frac{2}{3}} d, $$

where d is the mean diameter of particle.

For a given volume fraction, f, and precipitate diameter, d, the increment in yield strength can be calculated by substituting all values in Eq. [B.2].

Appendix C

The order strengthening from Nb(C,N) atom clusters can be calculated from

$$ \Delta \sigma_{2} = 0.81M\frac{\gamma }{2b}\left( {\frac{3\pi f}{8}} \right)^{1/2}, $$
(C.1)

where M = 2 is the matrix orientation factor; b = 0.248 nm is Burger’s vector; γ is matrix-cluster interface energy, which is assumed to be 1 J m−2; f is the cluster volume fraction.

For predicted cluster volume fraction of 0.00233 from atom probe data analysis, order strengthening increment is calculated to be 170 MPa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Langelier, B., Gault, B. et al. Effect of Nb Addition to Ti-Bearing Super Martensitic Stainless Steel on Control of Austenite Grain Size and Strengthening. Metall Mater Trans A 48, 2460–2471 (2017). https://doi.org/10.1007/s11661-017-4036-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4036-7

Keywords

Navigation