Skip to main content
Log in

Tensile Work Hardening Modeling of Precipitation Strengthened Nb-Microalloyed Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Very often Nb contributes to the strength of a microalloyed steel beyond the expected level due to the grain size strengthening resulting from thermomechanical processing. Two different mechanisms are behind this phenomenon, and both of them have to do with the amount of Nb remaining in the solution after hot rolling. The first of them is the increase of the hardenability of the steel due to Nb, and the second one is the fine precipitation of NbC in ferrite. The contribution of the precipitates to the work hardening of two thermally and thermomechanically processed microalloyed steels is addressed in this work and this contribution has been integrated into previously developed models by the authors for ferrite–pearlite microstructures. An L eff is considered through the effective spacing associated to the different obstacles and their interactions with the moving dislocations. The model obtained shows good agreement with the experimental tensile curves from the end of yield point elongation to the onset of necking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F.B. Pickering, Microalloying ‘75, International Symposium on HSLA Steels, Union Carbide Corporation, New York, 1975, pp. 9–31.

  2. M. Cohen, W. Owen, Microalloying ‘75, International Symposium on HSLA Steels, Union Carbide Corporation, New York, 1975, pp. 2–8

  3. J.M. Rodríguez-Ibabe, in Materials Science Forum, vol. 500-501, Proceedings of the International Conference on Microalloying for New Steel Processes and Applications, 2005, pp. 49–62.

  4. T. Gladman, The Physical Metallurgy of Microalloyed Steels. The Institute of Materials, London, 1997.

    Google Scholar 

  5. B. Dutta and C. M. Sellars, Materials Science and Technology, 1987, vol. 3, pp. 197-206.

    Article  Google Scholar 

  6. W. J. Liu and J. J. Jonas, Metallurgical Transactions A, 1989, vol. 20, pp. 689-697

    Article  Google Scholar 

  7. R. Abad, A. I. Fernandez, B. Lopez and J. M. Rodriguez-Ibabe, ISIJ International, 2001,vol. 41, pp. 1373-1382.

    Article  Google Scholar 

  8. E. J. Palmiere, C. I. García and A. J. DeArdo, Metallurgical and Materials Transactions A, 1996, vol. 27, pp. 951-960.

    Article  Google Scholar 

  9. O. Kwon and A. J. DeArdo, Acta Metallurgica et Materialia, 1991, vol. 39, pp. 529-538.

    Article  Google Scholar 

  10. Q. B. Yu, Z. D. Wang, X. H. Liu and G. D. Wang, Materials Science and Engineering A, 2004, vol. 379, pp. 384-390.

    Article  Google Scholar 

  11. S. Yamamoto, C. Ouchi, T. Osuka, in Thermomechanical Processing Of Microalloyed Austenite, A.J. DeArdo, G.A. Ratz, and P.J. Wray, eds., The Metallurgical Society of AIME, Warrendale, PA, 1982, pp. 613–39.

  12. T. Sakuma, R.W.K. Honeycombe, Metal Science, 1984, vol. 18, pp. 449-454.

    Article  Google Scholar 

  13. T. Sakuma, R.W.K. Honeycombe, Materials Science Technology, 1985, vol. 1, pp. 351-356.

    Article  Google Scholar 

  14. A. Itman, K.R. Cardoso and H.J. Kestenbach, Materials Science Technology, 1997, vol. 13, pp. 49-55.

    Article  Google Scholar 

  15. R.G. Baker, J. Nutting, Iron and Steel Institute, Special Report, No. 64, 1959.

  16. T. Gladman: Mater. Sci. Technol., 1999, vol.15, pp. 30-36.

    Article  Google Scholar 

  17. H.J. Kestenbach: Mater. Sci. Technol., 1997, vol. 13, pp. 731-739.

    Article  Google Scholar 

  18. A. Kelly, R.B. Nicholson: Strengthening methods in crystals, Applied Science LTD, London, 1971.

    Google Scholar 

  19. B. Reppich, in Materials Science and Technology. A Comprehensive Treatment, vol. 6, H. Mughrabi, ed., VCH, Germany, 1993, pp. 311–57.

  20. T. Gladman, I.D. McIvor, F.B. Pickering, JISI, 1972, 210, 916.

    Google Scholar 

  21. R. Rodriguez and I. Gutierrez, Mater. Sci. Forum, 2003, vol. 426-432, pp. 4525-4530.

    Article  Google Scholar 

  22. I. Gutierrez, in Proceedings of the 2nd International Conference on Deformation processing and Structure of Materials, Belgrade, 26–28 May 2005, E. Romhanji, M.T. Jovanovíc, and N. Radovic, eds., AME & University of Belgrade (TMF), Belgrade, 2005, pp. 29–42

  23. I. Gutierrez, A. Altuna, Acta Materialia, 2008, vol. 56, pp. 4682-4690

    Article  Google Scholar 

  24. A. IZA-MENDIA, M.A. ALTUNA, B. PEREDA, and I. GUTIÉRREZ, Metall. Mater. Trans. A, 2012, vol. 43A, pp 4553-4570

    Article  Google Scholar 

  25. A. IZA-MENDIA, M.A. ALTUNA, and I. GUTIÉRREZ, Metallurgical and Materials Transactions A, 2012, vol. 43A, pp. 4571-4586.

    Google Scholar 

  26. A. Iza-Mendia, I. Gutiérrez, Mater. Sci. Eng. A, 2013, vol. 561, pp 40–51.

    Article  Google Scholar 

  27. I. Gutiérrez, Mater. Sci. Eng. A, 2013, vol. 571, pp 57-67.

    Article  Google Scholar 

  28. Amaia Iza-Mendia, Isabel Gutiérrez, Mater. Sci. Forum, 2014, vol. 783-786, pp 783-788.

    Article  Google Scholar 

  29. B. López, C. Scott, A. Rose, B. Soenen, G. Paul, Characterization and modelling of strain induced precipitation: CAMSIP. Technical Steel Research, EUR 22431 (2006).

  30. R. L. Higginson, C. M. Sellars, Worked examples in quantitative metallography (The Institute of Materials, Minerals and Mining, London), 2003.

    Google Scholar 

  31. Taylor GI, Proceedings of the Royal Society of London 1934, 145, 362.

    Article  Google Scholar 

  32. J. Gil-Sevillano, in Plastic Deformation and Fracture of Materials, vol. 6, R.W. Cahn, P. Haasen, E.J. Kramer, and H. Mughrabi, eds., VCH, New York, 1993, p. 19.

  33. Kocks UF, Philosophical Magazine 1966, 13, 541.

    Article  Google Scholar 

  34. Bergström Y, Materials Science and Engineering 1969, 5, 193.

    Article  Google Scholar 

  35. Kocks UF, Journal of Engineering Materials and Technology 1976, 98, 76.

    Article  Google Scholar 

  36. Mecking H, Kocks UF, Acta Metallurgica 1981, 29, 1865.

    Google Scholar 

  37. Estrin Y, Mecking H, Acta Metallurgica 1984, 32, 57.

    Article  Google Scholar 

  38. A. Ramazani, K. Mukherjee, U. Prahl and W. Bleck, Metallurgical and Materials Transactions A, Volume 43A, October 2012, pp. 3850-3869.

    Article  Google Scholar 

  39. G. Ferron, E.L. Ouakdi, J.R. Kleczko, M. Mliha-Touati, in Constitutive Equations and Their Physical Basis, S.I. Andersen, J.B. Bilde Sorensen, N. Hansen, T. Leffers, H. Lilholt, O.B. Pedersen, and B. Ralph, eds., RISO National Laboratory, Roskilde, Denmark, 1987, p. 311.

  40. R. Rodriguez, I. Gutierrez, in Proceedings of the TMP’2004, M. Lamberigts, ed., Verlag Stahleisen GMBH, Düsseldorf, 2004, p. 356.

  41. I. Gutierrez, A. Altuna, G. Paul, S.V. Parker, J.H. Bianchi, P. Vescovo, C. Mesplont, M. Wojcicki, R. Kawalla, Property Models for Mixed Microstructures, Technical Steel Research, EUR 20880, 2003.

  42. T. Mori and K. Tanaka, Acta Metall., May 1973, vol. 21, no. 5, pp. 571–574,.

    Article  Google Scholar 

  43. M. Berveiler and A. Zaoui, J. Mech. Phys. Solids, 1978, 26, pp. 325-344.

    Article  Google Scholar 

  44. J.D. Eshelby, Proc. R. Soc. London, 1957, A241, 376.

    Article  Google Scholar 

  45. G.J. Weng, J. Mech. Phys. Solids, 38, 1990, pp. 419-441.

    Article  Google Scholar 

  46. Y. Tomota, K. Kuroki, T. Mori and I. Tamura,” Mater. Sci. Eng., 1976, vol. 24, pp. 85.

    Article  Google Scholar 

  47. Rudiono, Y. Tomota, Acta mater., vol. 45, pp. 1923-1929, 1997.

    Article  Google Scholar 

  48. F. Roters, D. Raabe, G. Gottstein, Acta Mater., vol. 48, pp. 4181–4189, 2000.

    Article  Google Scholar 

  49. M. Goerdeler, G. Gottstein, Materials Science and Engineering A 2001, 309–310 pp. 377–381

    Article  Google Scholar 

Download references

Acknowledgments

This work has been carried out with the financial support of the Spanish Ministerio de Economía y Competitividad. Proyectos I+D+i. Retos Investigación. (Project Number MAT2013-48093-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaia Iza-Mendia.

Additional information

Manuscript submitted November 8, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iza-Mendia, A., Jorge-Badiola, D. & Gutiérrez, I. Tensile Work Hardening Modeling of Precipitation Strengthened Nb-Microalloyed Steels. Metall Mater Trans A 48, 2943–2948 (2017). https://doi.org/10.1007/s11661-017-4035-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4035-8

Keywords

Navigation