Skip to main content
Log in

Role of Self-Organization of Dislocations in the Onset and Kinetics of Macroscopic Plastic Instability

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present paper examines two aspects of the problem of critical conditions of jerky flow in alloys, or the Portevin–Le Chatelier (PLC) effect. Recent development of dynamic strain aging (DSA) models proved their capacity to qualitatively reproduce complex non-monotonic behavior of the critical strain, providing that the parameters of theory are allowed to depend on strain. Experimental measurements of such strain dependences have been realized for the first time and used to revise the predictions of the critical strain and stress relaxation kinetics upon abrupt strain-rate changes. On the other hand, it is usually omitted from consideration that the PLC stress serrations can last very short time in comparison with the characteristic time of stress transients. The development of stress drops was studied with the aid of the acoustic emission (AE) technique. It is shown that such macroscopic instabilities are caused by clustering of AE events which otherwise occur all the time, including the periods of smooth plastic flow. The role of synchronization of dislocation avalanches in the development of abrupt stress serrations and its relationship with the predictions of the local DSA models is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Preliminary results of this study were presented in proceedings.[26]

  2. A more detailed analysis shows that some superposition amplifying A-values can sometimes be detected. Such analysis will be published elsewhere.

  3. From the first view, the perfect synchronization could even produce a catastrophic process involving the whole sample. However, this process is stopped because of the fall in the applied stress due to the elastic reaction of the deformation machine when the plastic strain rate exceeds the imposed strain rate (see Eq. [6]).

References

  1. A. Portevin and F. Le Chatelier: C. R. Acad. Sci. Paris, 1923, vol. 176, pp. 507-10.

    Google Scholar 

  2. J.M. Robinson: Int Mater. Rev., 1994, vol. 39, pp. 217-27.

    Article  Google Scholar 

  3. Y. Yilmaz: Sci. Technol. Adv. Mater., 2011, vol. 12, p. 063001(16).

  4. A. Van den Beukel: Phys. Stat. Sol. (a), 1975, vol. 30, pp. 197-206.

    Article  Google Scholar 

  5. P. Penning: Acta metall., 1972, vol. 20, pp. 1169-75.

    Article  Google Scholar 

  6. P.G. McCormick: Acta Metall., 1988, vol. 36, pp. 3061-67.

    Article  Google Scholar 

  7. Y. Estrin and L.P. Kubin: J. Mech. Behavior Mater., 1990, vol. 2, pp. 255-92.

    Google Scholar 

  8. L.P. Kubin and Y. Estrin: Acta Metall. Mater., 1990, vol. 38, pp. 697-708.

    Article  Google Scholar 

  9. R. Král and P. Lukáč: Mater. Sci. Eng. A, 1997, vol. 234-236, pp. 786-89.

    Article  Google Scholar 

  10. G. Horvath, N.G. Chinh, J. Gubicza, and J. Lendvai: Mater. Sci. Eng. A, 2007, vol. 446, pp. 186-92.

    Article  Google Scholar 

  11. P. Hähner: Mater. Sci. Eng. A, 1996, vol. 207, pp. 208–15, 216–23.

  12. P. Hähner, A. Ziegenbein, E. Rizzi, and H. Neuhäuser: Phys. Rev. B, 2002, vol. 65, p. 134109(20).

  13. J. Schlipf: Scr. Metall. Mater., 1994, vol. 31, pp. 909-14.

    Article  Google Scholar 

  14. F. Springer, A. Nortmann, and Ch. Schwink: Phys. Stat. Sol. A, 1998, vol. 170, pp. 63-81.

    Article  Google Scholar 

  15. R.C. Picu and D. Zhang: Acta Mater., 2004, vol. 52, pp. 161-71.

    Article  Google Scholar 

  16. J. Balík: Mater. Sci. Eng. A, 2001, vol. 316, pp. 102-08.

    Article  Google Scholar 

  17. T.A. Lebedkina and M.A. Lebyodkin: Acta Mater., 2008, vol. 56, pp. 5567-74.

    Article  Google Scholar 

  18. Y. Brechet and Y. Estrin: Acta Metall. Mater., 1995, vol. 43, pp. 955-63.

    Article  Google Scholar 

  19. T. Böhlke, G. Bondár, Y. Estrin, and M.A. Lebyodkin: Comp. Mater. Sci., 2008, vol. 44, 1076-88.

    Article  Google Scholar 

  20. M. Mazière and H. Dierke: Comp. Mat. Sci., 2012, vol. 52, pp. 68-72.

    Article  Google Scholar 

  21. C.P. Ling and P.G. McCormick: Acta Metall. Mater., 1990, vol. 38, pp. 2631-35.

    Article  Google Scholar 

  22. C.P. Ling and P.G. McCormick: Acta Metall. Mater., 1993, vol. 41, pp. 3127-31.

    Article  Google Scholar 

  23. R.B. Schwarz and L.L. Funk: Acta metall., 1985, vol. 33, pp. 295-307.

    Article  Google Scholar 

  24. M.A. Lebyodkin and T.A. Lebedkina: Phys. Rev. E, 2006, vol. 73, pp. 036114(8).

  25. H. Ait-Amokhtar, C. Fressengeas, and S. Boudrahem: Mater. Sci. and Eng. A, 2008, vol. 488, pp. 540-46.

    Article  Google Scholar 

  26. T.A. Lebedkina, N.P. Kobelev, and M.A. Lebyodkin: Mater. Sci. Forum, 2014, vol. 783-786, pp. 198-203.

    Article  Google Scholar 

  27. M.A. Lebyodkin, Y. Bréchet, Y. Estrin, and L.P. Kubin: Phys. Rev. Lett., 1995, vol. 74, pp. 4758-61.

    Article  Google Scholar 

  28. P.G. McCormick and C.P. Ling: Acta Metall. Mater., 1995, vol. 43, pp. 1969-77.

    Article  Google Scholar 

  29. S. Kok, A.J. Beaudoin, D.A. Tortorelli, and M. Lebyodkin: Model Sim. Mat. Sci. Eng., 2002, vol. 10, pp. 745-63.

    Article  Google Scholar 

  30. E. Rizzi and P. Hähner: Inter. J. Plast., 2004, vol. 20, pp. 121-65.

    Article  Google Scholar 

  31. G. Lasko, P. Hähner, and S. Schmauder: Model Sim. Mater. Sci. Eng., 2005, vol. 13, 645-56.

    Article  Google Scholar 

  32. G. Ananthakrishna: Phys. Rep., 2007, vol. 440, pp. 113-239.

    Article  Google Scholar 

  33. S. Varadhan, A.J. Beaudoin, and C. Fressengeas: J. Mech. Phys. Solids, 2009, vol. 57, pp. 1733-48.

    Article  Google Scholar 

  34. M. Abbadi, P. Hähner, and A. Zeghloul: Mater. Sci. Eng. A, 2002, vol. 337, pp. 194-201.

    Article  Google Scholar 

  35. D. Thevenet, M. Mliha-Touati, and A. Zeghloul: Mater. Sci. Eng. A, 1999, vol. 266, pp. 175-82.

    Article  Google Scholar 

  36. M.A. Lebyodkin, N.P. Kobelev, Y. Bougherira, D. Entemeyer, C. Fressengeas, V.S. Gornakov, T.A. Lebedkina, and I.V. Shashkov: Acta Mater., 2012, vol. 60, pp. 3729-40.

    Article  Google Scholar 

  37. J. Weiss, T. Richeton, F. Louchet, F. Chmelik, P. Dobron, D. Entemeyer, M. Lebyodkin, T. Lebedkina, C. Fressengeas, and R.J. McDonald: Phys. Rev. B, 2007, vol. 76, p. 224110(8).

  38. M.A. Lebyodkin, N.P. Kobelev, Y. Bougherira, D. Entemeyer, C. Fressengeas, T.A. Lebedkina, and I.V. Shashkov: Acta Mater., 2012, vol. 60, pp. 844-50.

    Article  Google Scholar 

  39. I.V. Shashkov, M.A. Lebyodkin, and T.A. Lebedkina, Acta Mater., 2012, vol. 60, pp. 6842-50.

    Article  Google Scholar 

  40. R.C. Picu, G. Vincze, J.J. Gracio, and F. Barlat: Scripta Mater., 2006, vol. 54, pp. 71-75.

    Article  Google Scholar 

  41. F. Ozturk, H. Pekel, and H.S. Halkaci: J. Mater. Eng. Perform., 2011, vol. 20, pp. 77-81.

    Article  Google Scholar 

  42. D. Wowk and K. Pilkey: Mater. Sci. Eng. A, 2009, vol. 520, pp. 174-78.

    Article  Google Scholar 

  43. M.A. Lebyodkin, I.V. Shashkov, T.A. Lebedkina, K. Mathis, P. Dobron, and F. Chmelik: Phys. Rev. E, 2013, vol. 88, p. 042402 (8).

  44. H. Jiang Q. Zhang, X. Chen, Z. Chen, Z. Jiang, X. Wu, and J. Fan: Acta Mater., 2007, vol. 55, pp. 2219-28.

    Article  Google Scholar 

  45. S. Fu, T. Cheng, Q. Zhang, Q. Hu, and P. Cao: Acta Mater., 2012, vol. 60, pp. 6650-56.

    Article  Google Scholar 

  46. P. G. McCormick: Scripta metall., 1978, vol. 12, pp. 197-200.

    Article  Google Scholar 

  47. C.J. Pérez, Á Corral, A. Díaz-Guilera, K. Christensen, and A. Arenas: Int. J. Mod. Phys. B, 1996, vol. 10, pp. 1111-51.

    Article  Google Scholar 

  48. D.A. Zhemchuzhnikova, M.A. Lebyodkin, T.A. Lebedkina, and R.O. Kaibyshev: Mater. Sci. Eng. A, 2015, vol. 639, pp. 37-41.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Region Lorraine (France) and the Center of Excellence “LabEx DAMAS” through the French State program “Investment in the future” (Grant ANR-11-LABX-0008-01 of the French National Research Agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Lebyodkin.

Additional information

Manuscript submitted July 24, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobelev, N.P., Lebyodkin, M.A. & Lebedkina, T.A. Role of Self-Organization of Dislocations in the Onset and Kinetics of Macroscopic Plastic Instability. Metall Mater Trans A 48, 965–974 (2017). https://doi.org/10.1007/s11661-016-3912-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3912-x

Keywords

Navigation