Skip to main content
Log in

The Influence of Composition on the Clustering and Precipitation Behavior of Al-Mg-Si-Cu Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The natural aging (NA) and artificial aging (AA) behavior of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions were systematically investigated by means of hardness test, atom probe tomography, transmission electron microscopy, and Monte Carlo simulation. The Si-rich low-Cu alloys displayed higher hardness compared to the Mg-rich equivalents because Si atoms play a dominant role in clustering of solute atoms during both natural and artificial aging. In the high-Cu alloys, Cu did not obviously change the cluster distribution during NA, but significantly refines the clusters and precipitates due to the strong interaction of Cu atoms with Mg atoms during AA. In contrast to the low-Cu alloys, the Mg-rich high-Cu alloys exhibit higher hardness in the early and over-aged stages of artificial aging, with similar or slightly higher hardness in the peak aging condition compared to their Si-rich counterparts. Three types of precipitates (β″, Q′, and L) are favored in the high-Cu alloys. The Mg-rich high-Cu alloy has more L phase, while the Si-rich variant is abundant in Q′ phase. The negative effect of NA on subsequent AA behavior is less dependent on Mg/Si ratio in the high-Cu alloys due to a synergistic action of the residual Si and Cu atoms, but is closely related to Mg/Si ratio in low-Cu alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P.D. Smet, A. Haszler: Mater. Sci. Eng. A, 2000, vol. 280, pp. 37-49.

    Article  Google Scholar 

  2. G.A. Edwards, K. Stille, G.L. Dunlop, M.J. Couper: Acta Mater., 1998, vol. 46, pp. 3893-904.

    Article  Google Scholar 

  3. C.S. Tsao, C.Y. Chen, U.S. Jeng, T.Y. Kuo: Acta Mater., 2006, vol. 54, pp. 4621-31.

    Article  Google Scholar 

  4. T. Saito, C.D. Marioara, S.J. Andersen, W. Lefebvre, R. Holmestad: Phil. Mag., 2014, vol. 94, pp. 520-31.

    Article  Google Scholar 

  5. W. Yang, L. Huang, R. Zhang, M. Wang, Z. Li, Y. Jia: J. Alloys Compd., 2012, vol. 514, pp. 220-33.

    Article  Google Scholar 

  6. M.A. van Huis, J.H. Chen, H.W. Zandbergen, M.H.F. Sluiter: Acta Mater., 2006, vol. 54, pp. 2945-55.

    Article  Google Scholar 

  7. H.W. Zandbergen, S. J. Andersen, J. Jansen: Science, 1997, vol. 277, pp. 1221-5.

    Article  Google Scholar 

  8. S.J. Andersen, H.W. Zandbergen, J. Jansen, C. TrÆholt, U. Tundal, O. Reiso: Acta Mater., 1998, vol. 46, pp. 3283-98.

    Article  Google Scholar 

  9. H.K.S. Hasting, A.G. Frøseth, S.J. Andersen, R. Vissers, J.C. Walmsley, C.D. Marioara: J Appl. Phys., 2009, vol. 106, pp. 123527.

    Article  Google Scholar 

  10. K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato, A. Kamio, S. Ikeno: J Mater. Sci., 2000, vol. 35, pp. 179-89.

    Article  Google Scholar 

  11. C.D. Marioara, S.J. Andersen, T.N. Stene, H. Hasting, J. Walmsley, A.T.J. Van Helvoort: Phil. Mag., 2007, vol. 87, pp. 3385-413.

    Article  Google Scholar 

  12. M. Torsæter, F.J.H. Ehlers, C.D. Marioara, S.J. Andersen, R. Holmestad: Phil. Mag., 2012, vol. 92, pp. 3833-56.

    Article  Google Scholar 

  13. F.J.H. Ehlers, S. Wenner, S.J. Andersen, C.D. Marioara, W. Lefebvre, C.B. Boothroyd: J Mater. Sci., 2014, vol. 49, pp. 6413-26.

    Article  Google Scholar 

  14. A. Serizawa, S. Hirosawa, T. Sato: Metall. Mater. Trans. A, 2008, vol. 39, pp. 243-51.

    Article  Google Scholar 

  15. C.S.T. Chang, J. Banhart: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1960-4.

    Article  Google Scholar 

  16. A.K. Guptaa, D.J. Lloyda, S.A. Courtb: Mater. Sci. Eng. A, 2001, vol. 316, pp. 11-7.

    Article  Google Scholar 

  17. J. Man, L. Jing, S.G. Jie: J. Alloys Compd., 2007, vol. 437, pp. 146-50.

    Article  Google Scholar 

  18. S. Wenner, C.D. Marioara, S.J. Andersen, R. Holmestad: Int. J. Mat. Res., 2012, vol. 103, pp. 948-54.

    Article  Google Scholar 

  19. C.S.T. Chang, I. Wieler, N. Wanderka, J. Banhart: Ultramic., 2009, vol. 109, pp. 585-92.

    Article  Google Scholar 

  20. G.H. Tao, C.H. Liu, J.H. Chen, Y.X. Lai, P.P. Ma, L.M. Liu: Mater. Sci. Eng. A, 2015, vol. 642, pp. 241-8.

    Article  Google Scholar 

  21. Y. Aruga, M. Kozuka, Y. Takaki, T. Sato: Mater. Sci. Eng. A, 2015, vol. 631, pp. 86-96.

    Article  Google Scholar 

  22. C.D. Marioara, S.J. Andersen, H.W. Zandbergen, R. Holmestad: Metall. Mater. Trans. A, 2005, vol. 36, pp. 691-702.

    Google Scholar 

  23. K. Hono: Acta Mater., 1999, vol. 47, pp. 3127-45.

    Article  Google Scholar 

  24. M. Murayama, K. Hono, M. Saga, M. Kikuchi: Mater. Sci. Eng. A, 1998, vol. 250, pp. 127-32.

    Article  Google Scholar 

  25. E.A. Jagle, P.P. Choi, D. Raabe: Microsc Microanal, 2014, vol.20, pp. 1662-71.

    Article  Google Scholar 

  26. T. Sato, S. Hirosawa, K. Hirose, T. Maeguchi: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2745-55.

    Article  Google Scholar 

  27. S. Hirosawa, F. Nakamura, T. Sato: Mater. Sci. Forum., 2007, vols. 561-565, pp. 283-6.

    Article  Google Scholar 

  28. M. Torsæter, H.S. Hasting, W. Lefebvre, C.D. Marioara, J.C. Walmsley, S.J. Andersen: J Appl. Phys., 2010, vol. 108, pp. 073527.

    Article  Google Scholar 

  29. S. Wenner, K. Nishimura, K. Matsuda, T. Matsuzaki, D. Tomono, F.L. Pratt: Metall. Mater. Trans. A, 2014, vol. 45, pp. 5777-81.

    Article  Google Scholar 

  30. J. Banhart, C.S.T. Chang, Z. Liang, N. Wanderka, M.D.H. Lay, A.J. Hill: Adv. Eng. Mater., 2010, vol. 12, pp. 559-71.

    Article  Google Scholar 

  31. S.P. Ringer, K. Hono: Mater. Charact., 2000, vol. 44, pp. 101-31.

    Article  Google Scholar 

  32. J. Banhart, C.S.T. Chang, Z. Liang, N. Wanderka, M.D.H. Lay, A.J. Hill: Adv. Eng. Mater., 2010, vol. 12, pp. 559-71.

    Article  Google Scholar 

  33. L. Cao, P.A. Rometsch, M.J. Couper: Mater. Sci. Eng. A, 2013, vol. 559, pp. 257-61.

    Article  Google Scholar 

  34. S. Esmaeili: Scr. Mater., 2004, vol. 50, pp. 155-8.

    Article  Google Scholar 

  35. M.W. Zandbergen, A. Cerezo, G.D.W. Smith: Acta Mater., 2015, vol. 101, pp. 149-58.

    Article  Google Scholar 

  36. M. Murayama, K. Hono: Acta Mater., 1999, vol. 47, pp. 1537-48.

    Article  Google Scholar 

  37. S. Pogatscher, H. Antrekowitsch, P.J. Uggowitzer: Acta Mater., 2012, vol. 60, pp. 5545-54.

    Article  Google Scholar 

Download references

Acknowledgments

Two of the authors (Zhihong Jia and Lipeng Ding) would like to acknowledge Prof. Shoichi Hirosawa from Yokohama National University for providing interatomic interaction parameters of various elements. This work was financially supported by the National Natural Science Foundation of China (Grant No. 51271209) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51421001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Jia.

Additional information

Manuscript submitted May 19, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Ding, L., Cao, L. et al. The Influence of Composition on the Clustering and Precipitation Behavior of Al-Mg-Si-Cu Alloys. Metall Mater Trans A 48, 459–473 (2017). https://doi.org/10.1007/s11661-016-3850-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3850-7

Keywords

Navigation