Skip to main content
Log in

The Influence of Grain Size on Twinning and Microstructure Refinement During Cold Rolling of Commercial-Purity Titanium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructure evolution in commercial-purity titanium (CP Ti) with various initial grain sizes (1, 7, 15, and 30 μm) during plane-strain multipass rolling to a true thickness strain of 2.66 at 293 K (20 °C) was established. The degree of deformation twinning was found to be strongly dependent on grain size. Twinning was rare in the material with a grain size of 1 μm. For all grain sizes >15 μm, the occurrence of twinning reached a similar, maximum level. Concurrently, the propensity for twinning enhanced the kinetics of microstructure refinement particularly for the initially coarse-grain materials. Due to the extensive twinning-induced microstructure refinement, rolling of coarse-grain (15 μm) CP Ti to a true thickness strain of 2.66 resulted in the formation of an ultrafine microstructure with a grain/subgrain size of 200-300 nm, a value similar to that attained for the initially micrometer-scale microstructure. The effect of grain size on twinning in titanium was discussed in the context of a disclination model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2 nd ed., Elsevier Science Ltd., Oxford, United Kingdom, 2004, pp. 451-66.

    Book  Google Scholar 

  2. A. Belyakov, K. Tsuzaki, H. Miura and T. Sakai: Acta Mater., 2003, vol. 51, pp. 847–61.

    Article  Google Scholar 

  3. M. El Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera and J.M. Prado: Acta Mater., 2005, vol. 53, pp. 4605–12.

    Article  Google Scholar 

  4. M.A. Meyers, O. Vöhringer and V.A. Lubarda: Acta Mater., 2001. vol. 49, pp. 4025–39.

    Article  Google Scholar 

  5. E. El-Danaf, S.R. Kalidindi and R.D. Doherty: Metall. Mater. Trans. A, 1999, vol. 30 pp. 1223-33.

    Article  Google Scholar 

  6. N. Stanford, U. Carlson and M.R. Barnett: Metall. Mater. Trans. A, 2008, vol. 39, pp. 934-44.

    Article  Google Scholar 

  7. M.R. Barnett, Z. Keshavarz, A.G. Beer and D. Atwell: Acta Mater., 2004, vol. 52 pp. 5093–103.

    Article  Google Scholar 

  8. S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev and S.L. Semiatin: Acta Mater., 2013, vol. 61, pp. 1167-78.

    Article  Google Scholar 

  9. Q. Yu, Z-W. Shan, J. Li, X. Huang, L. Xiao, J. Sun and E. Ma: Nature, 2010, vol. 463, pp. 335-38.

    Article  Google Scholar 

  10. G.A. Salishchev and S.Yu. Mironov: Russian Phys. J., 2001, vol. 44, pp. 596-601.

    Article  Google Scholar 

  11. S. Zherebtsov, E. Kudryavtsev, S. Kostjuchenko, S. Malysheva and G. Salishchev: Mater. Sci. Eng. A, 2012, vol. 536, pp. 190–96.

    Article  Google Scholar 

  12. M. Kong, R.N. Bhattacharya, C. James and A. Basu: Geol. Soc. Am. Bull., 2005, vol. 117 pp. 244-49.

    Article  Google Scholar 

  13. D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  Google Scholar 

  14. L. Capolungo, P.E. Marshall, R.J. McCabe, I.J. Beyerlein and C.N. Tome: Acta Mater., 2009, vol. 57, pp. 6047-56.

    Article  Google Scholar 

  15. N. Bozzolo, N. Dewobroto, H. R. Wenk and F. Wagner: J. Mater. Sci., 2007, vol. 42, pp. 2405–16.

    Article  Google Scholar 

  16. Y.B. Chun, S.H. Yu, S.L. Semiatin and S.K. Hwang: Mater. Sci. Eng. A, 2005, vol. 398, pp. 209–19.

    Article  Google Scholar 

  17. S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, S.P. Malysheva, G.A. Salishchev and S.L. Semiatin: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3474–79.

    Article  Google Scholar 

  18. A.A. Salem, S.R. Kalidindi and R.D. Doherty: Acta Mater., 2003, vol. 51, pp. 4225-37.

    Article  Google Scholar 

  19. A.A. Salem, S.R. Kalidindi, R.D. Doherty and S. L. Semiatin: Metall. Mater. Trans. A, 2006, vol. 37, pp. 259-68.

    Article  Google Scholar 

  20. A.A. Salem, S.R. Kalidindi, R.D. Doherty, M.G. Glavicic and S. L. Semiatin: in Ti-2003 Science and Technology, G. Luetjering, J. Albrecht, eds., Wiley, Weinheim, 2004.

  21. V.F. Moiseev and V.I. Trefilov: Phys. Stat. Sol., 1966, vol. 18, pp. 881-95.

    Article  Google Scholar 

  22. R.W. Armstrong and P.J. Worthington: in Metallurgical Effects at High Strain Rates, R.W. Rohde, B.M. Butcher, J.R. Holland, C.H. Karnes, eds., Plenum Press, New York, 1973, pp. 401–14.

  23. J.W. Christian and S. Mahajan: Progr. Mater. Sci., 1995, vol. 39, pp. 1-157.

    Article  Google Scholar 

  24. S. Mahajan: Scripta Mater., 2013, vol. 68, pp. 95–99.

    Article  Google Scholar 

  25. J.D. Eshelby: Proc. Roy. Soc. Lond. A, 1957, vol. 241, pp. 376-96.

    Article  Google Scholar 

  26. J.A. Venables: J. Phys. Chem. Solids, 1964, vol. 25, pp. 693-700.

    Article  Google Scholar 

  27. R.A. Lebensohn and C.N. Tome: Phil. Mag. A, 1993, vol. 67. pp. 187-206.

    Article  Google Scholar 

  28. J. Friedel: Dislocations, Pergamon Press, Oxford, 1964, pp. 208-220.

    Google Scholar 

  29. A. Ghader and M.R. Barnett: Acta Mater., 2011, vol. 59, pp. 7824–39.

    Article  Google Scholar 

  30. A.E. Romanov and A.L. Kolesnikova: Progr. Mater. Sci., 2009, vol. 54, pp. 740-69.

    Article  Google Scholar 

  31. M. Yu. Gutkin, I.A. Ovid’ko and N.V. Skiba: Phys. Rev. B, 2006, vol. 74, pp. 172107(1-4).

  32. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1897-904.

    Google Scholar 

  33. Y.T. Zhu, X.Z. Liao, S.G. Srinivasan and E.J. Lavernia: J. Appl. Phys., 2005, vol. 98, pp. 034319(1-8).

  34. M.Yu. Gutkin and I.A. Ovid’ko: Plastic Deformation in Nanocrystalline Materials, Springer, Berlin, 2004.

    Book  Google Scholar 

  35. T. Shimokawa, A. Nakatani and H. Kitagawa: Phys. Rev. B, 2005, vol. 71, pp. #224110(1-8).

  36. I.A. Ovid’ko and N.V. Skiba: Scripta Mater., 2014, vol. 71, pp. 33–36.

  37. J.P. Hirth and J. Lothe: Theory of Dislocations, Wiley, New York, 1982, pp. 811-34.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Ministry of Education and Science, Russia (Belgorod State University, Project No. 11.1816.2014/K). The authors are grateful to the personnel of the Joint Research Centre, Belgorod State University, for their assistance with the experimental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Zherebtsov.

Additional information

Manuscript submitted December 17, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zherebtsov, S.V., Dyakonov, G.S., Salishchev, G.A. et al. The Influence of Grain Size on Twinning and Microstructure Refinement During Cold Rolling of Commercial-Purity Titanium. Metall Mater Trans A 47, 5101–5113 (2016). https://doi.org/10.1007/s11661-016-3679-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3679-0

Keywords

Navigation