Skip to main content
Log in

Mechanical properties and structural features of nanocrystalline titanium produced by cryorolling

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A broad spectrum of physicomechanical properties of the VT1-0 nanocrystalline titanium produced by cryomechanical fragmentation of the grain structure using rolling at a temperature close to liquid-nitrogen temperature has been studied. It has been found that the mechanism of grain refinement is associated with grain fragmentation by twins. Exactly the twin nature of internal interfaces (crystallite boundaries) provides the thermal and structural stability of nanocrystalline titanium produced by cryomechanical grain fragmentation in the temperature range to ∼500 K. It has been assumed that the observed decrease in the titanium density due to cryorolling is associated with a number of factors (high density of introduced dislocations, nanopore formation, and changes in titanium lattice parameters).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Nanostruct. Mater. 1, 1 (1992).

    Article  Google Scholar 

  2. R. A. Andrievskii and A. M. Glezer, Phys.-Usp. 52(4), 315 (2009).

    Article  ADS  Google Scholar 

  3. Y. Estrin and A. Vinogradov, Acta Mater. 61, 782 (2013).

    Article  Google Scholar 

  4. A. R. Smirnov and V. A. Moskalenko, Mater. Sci. Eng., A 327, 138 (2002).

    Article  Google Scholar 

  5. Y. Wang, M. Chen, F. Zhou, and E. Ma, Nature (London) 419, 912 (2002).

    Article  ADS  Google Scholar 

  6. N. Rangaraju, T. Ranghuram, B. V. Krishna, K. P. Rao, and P. Venugopal, Mater. Sci. Eng., A 398, 246 (2005).

    Article  Google Scholar 

  7. Y. Huang and P. B. Prangnell, Acta Mater. 56, 1619 (2008).

    Article  Google Scholar 

  8. V. A. Moskalenko, A. R. Smirnov, and A. V. Mosk- alenko, Low Temp. Phys. 35(11), 905 (2009).

    Article  ADS  Google Scholar 

  9. T. Konkova, S. Mironov, A. Korznikov, and S. L. Semi- atin, Acta Mater. 58, 5262 (2010).

    Article  Google Scholar 

  10. D. K. Yang, P. D. Hodgson, and C. E. Wen, Scr. Mater. 63, 941 (2010).

    Article  Google Scholar 

  11. I. A. Gindin, M. B. Lazareva, V. P. Lebedev, Ya. D. Sta- rodubov, V. M. Matsevityi, and V. I. Khotkevich, Fiz. Met. Metalloved. 24(2), 347 (1967).

    Google Scholar 

  12. I. A. Gindin, M. B. Lazareva, V. P. Lebedev, and Ya. D. Starodubov, Fiz. Met. Metalloved. 23(1), 138 (1967)

    Google Scholar 

  13. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, J. Met. 58, 33 (2006).

    Google Scholar 

  14. V. A. Moskalenko, V. I. Startsev, and V. N. Kovaleva, Cryogenics 20, 507 (1980).

    Article  ADS  Google Scholar 

  15. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science (Washington) 304, 422 (2004).

    Article  ADS  Google Scholar 

  16. X. Zhang, Acta Mater. 52, 995 (2004).

    Article  Google Scholar 

  17. C. C. Koch, J. Mater. Sci. 42, 14031 (2007).

    Google Scholar 

  18. S. P. Nikanorov and B. K. Kardashev, Elasticity and Dislocation Inelasticity of Crystals (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  19. V. A. Moskalenko and A. R. Smirnov, Mater. Sci. Eng., A 246, 282 (1998).

    Article  Google Scholar 

  20. V. I. Betekhtin, A. G. Kadomtsev, V. Sklenicka, and V. Saxl, Phys. Solid State 49(10), 1874 (2007).

    Article  ADS  Google Scholar 

  21. R. Lapovok, D. Tomys, J. Mang, Y. Estrin, and I. Lowe, Acta Mater. 57, 2909 (2009).

    Article  Google Scholar 

  22. V. I. Betekhtin, V. Sklenicka, V. Saxl, B. K. Kardashev, and M. V. Narykova, Phys. Solid State 52(8), 1629 (2010).

    Article  ADS  Google Scholar 

  23. J. Friedel, Dislocations (Pergamon, London, 1967; Mir, Moscow, 1967).

    Google Scholar 

  24. I. S. Braude, N. N. Gal’tsov, V. A. Moskalenko, and A. R. Smirnov, Low Temp. Phys. 37(11), 1042 (2011).

    Article  ADS  Google Scholar 

  25. Yu. A. Semerenko, V. A. Moskalenko, and A. R. Smirnov, Metallofiz. Noveishie Tekhnol. 35, 499 (2013).

    Google Scholar 

  26. A. V. Granato and K. Lücke, J. Appl. Phys. 27, 583 (1956).

    Article  ADS  MATH  Google Scholar 

  27. Yu. R. Kolobov, V. I. Betekhtin, E. V. Golosov, A. G. Ka- domtsev, N. N. Kuz’menko, B. K. Kardashev, and M. V. Narykova, Vestn. Tomsk. Gos. Univ. 18(4), 1531 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Betekhtin.

Additional information

Original Russian Text © V.A. Moskalenko, V.I. Betekhtin, B.K. Kardashev, A.G. Kadomtsev, A.R. Smirnov, R.V. Smolyanets, M.V. Narykova, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 8, pp. 1539–1545.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskalenko, V.A., Betekhtin, V.I., Kardashev, B.K. et al. Mechanical properties and structural features of nanocrystalline titanium produced by cryorolling. Phys. Solid State 56, 1590–1596 (2014). https://doi.org/10.1134/S1063783414080204

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414080204

Keywords

Navigation