Skip to main content
Log in

Al-Ti Particulate Composite: Processing and Studies on Particle Twinning, Microstructure, and Thermal Stability

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present investigation shows that alternate to the ceramic particles, hard metallic particles can be used as reinforcement in an aluminum matrix to achieve a good strength–ductility combination in a composite. Titanium particles were incorporated into aluminum by friction stir processing (FSP) to process an Al-Ti particulate composite. FSP led to uniform distribution of the particles in the stir zone without any particle–matrix reaction, thereby retaining the particles in their elemental state. Fracture and twinning of the Ti particles with different frequency of occurrence on the advancing and retreating sides of the stir zone was observed. Twinning of the particles was studied by focused ion beam-assisted transmission electron microscopy. The processed Al-Ti composite exhibited a significant improvement in strength and also retained appreciable amount of ductility. The thermal stability of the fine-grained structure against abnormal grain growth (AGG) was improved by the Ti particles. The AGG in the Al-Ti composite occurred at 713 K (440 °C) compared to 673 K (400 °C) in the unreinforced aluminum processed under the same conditions. On the other hand, the particle–matrix reaction occurred only at 823 K (550 °C), and hence the Ti particles were thermally more stable compared to the matrix grain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.W. Clyne and P.J. Withers: An introduction to metal matrix composites, 1st Ed., Cambridge University Press, Cambridge, 1993.

    Book  Google Scholar 

  2. B. Ralph, H.C. Yuen and W.B. Lee: J. Mater. Process. Technol., 1997, vol. 63, pp. 339-53.

    Article  Google Scholar 

  3. J.V. Wood, P. Davies and J.L.F. Kellie: Mater. Sci. Technol., 1993, vol. 9 pp. 833-40.

    Article  Google Scholar 

  4. B.F. Luan, N. Hansen, A. Godfrey, G.H. Wu and Q. Liu: Mater. Des., 2011, vol. 32, pp. 3810-17.

    Article  Google Scholar 

  5. S.J. Hong, H.M. Kim, D. Huh, C. Suryanarayana and B.S. Chun: Mater. Sci. Eng. A, 2003, vol. 347, pp. 198-04.

    Article  Google Scholar 

  6. R.J. Arsenault and N. Shi: Mater. Sci. Eng., 1986, vol. 81, pp. 175-87.

    Article  Google Scholar 

  7. K.B. Lee, H.S. Sim, S.Y. Cho and H. Kwon: Mater. Sci. Eng. A, 2001, vol. 302, pp. 227-34.

    Article  Google Scholar 

  8. J.J. Lewandowski and C. Liu: Mater. Sci. Eng. A, 1989, vol. 107, pp. 241-55.

    Article  Google Scholar 

  9. Z. Wang, M. Song, C. Sun, D. Xiao and Y. He: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6537-42.

    Article  Google Scholar 

  10. S.C. Deevi and V.K. Sikka: Intermetallics, 1996, vol. 4, pp. 357-75.

    Article  Google Scholar 

  11. W.Y. Yang and G.C. Weatherly: J. Mater. Sci., 1996, vol. 31, pp. 3707-13.

    Article  Google Scholar 

  12. J.C. Rawers and H.E. Maupin: J. Mater. Sci. Lett., 1993, vol. 12, pp. 637-39.

    Article  Google Scholar 

  13. D. Özyürek, S. Tekeli, T. Tuncay and R. Yilmaz: Powder Metall. Met. Ceram., 2012, vol. 51, pp. 491-95.

    Article  Google Scholar 

  14. M. Sujata, S. Bhargava and S. Sangal: Iron Steel Inst. Jpn., 1996, vol. 36, pp. 255-62.

    Article  Google Scholar 

  15. S. Mousheng, Z. Mengxian, H. Bin, Z. Shuguang and L. Jianguo: Rare Met. Mater. Eng., 2008, vol. 37, pp. 1570-74.

    Article  Google Scholar 

  16. S.K. Thakur and M. Gupta: Composites Part A, 2007, vol. 38, pp. 1010-18.

    Article  Google Scholar 

  17. D. Yang, P. Cizek, P. Hodgsona and C. Wen: Scripta Mater., 2010, vol. 62, pp. 321-24.

    Article  Google Scholar 

  18. T. Marr, J. Freudenberger, D. Seifert, H. Klauβ, J. Romberg, I. Okulov, J. Scharnweber, A. Eschke, C.G. Oertel, W. Skrotzki, U. Kühn, J. Eckert and L. Schultz: Metals, 2011, vol. 1, pp. 79-97.

    Article  Google Scholar 

  19. C.Y. Liu, B. Zhang, P.F. Yu, R. Jing, M.Z. Ma and R.P. Liu: Mater. Sci. Eng. A, 2013, vol. 580, pp. 36-40.

    Article  Google Scholar 

  20. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara and A.K. Mukherjee, High strain rate superplasticity in a friction stir processed 7075 Al alloy: Scripta Mater., 2000, vol. 42, pp. 163-68.

    Article  Google Scholar 

  21. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50, pp. 1-78.

    Article  Google Scholar 

  22. C.I. Chang, X. H. Du and J.C. Huang: Scripta Mater., 2007, vol. 57, pp. 209-12.

    Article  Google Scholar 

  23. J.Q. Su, T.W. Nelson and C.J. Sterling: Scripta Mater., 2005, vol. 52, pp. 135-40.

    Article  Google Scholar 

  24. J.Q. Su, T.W. Nelson and C.J. Sterling: J. Mater. Res., 2003, vol. 18, pp. 1757-60.

    Article  Google Scholar 

  25. Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39, pp. 642-58.

    Article  Google Scholar 

  26. C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho and C.P. Chang: Acta Mater., 2006, vol. 54, pp. 5241-49.

    Article  Google Scholar 

  27. R.S. Mishra, Z.Y. Ma and I. Charit: Mater. Sci. Eng. A, 2003, vol. 341, pp. 307-10

    Article  Google Scholar 

  28. C.F. Chen, P.W. Kao, L.W. Chang and N.J. Ho: Metall. Mater. Trans. A, 2009, vol. 41, pp. 513-22.

    Google Scholar 

  29. M.S. Khorrami, M. Kazeminezhad and A.H. Kokabi: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2021-34.

    Article  Google Scholar 

  30. H.S. Arora, H. Singh and B.K. Dhindaw: Int. J. Adv. Manuf. Technol, 2012, vol. 61, pp. 1043-55.

    Article  Google Scholar 

  31. D. Yadav and R. Bauri: Mater. Lett., 2010, vol. 64, pp. 664-67.

    Article  Google Scholar 

  32. D. Yadav and R. Bauri: Mater. Sci. Tech., 2015, vol. 31, pp. 494-500.

    Article  Google Scholar 

  33. T.B. Massalski and H. Okamoto: Binary alloy phase diagrams. Materials Park (OH), ASM International, 1993.

    Google Scholar 

  34. J.C. Schuster and M. Palm: J. Phase Equilib. Diffus., 2006, vol. 27, pp. 255-77.

    Article  Google Scholar 

  35. Q. Zhang, B.L. Xiao and Z.Y. Ma: Mater. Chem. Phys., 2013, vol. 139, pp. 596-602.

    Article  Google Scholar 

  36. W.J. Arbegast, and P.J. Hartley: Proceedings of the Fifth International Conference on Trends in Welding Research, Pine Mountain, USA (1998) 541.

  37. S.K. Das and L.A. Davis: Mater. Sci. Eng., 1988, vol. 98, pp. 1-12.

    Article  Google Scholar 

  38. J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1-157.

    Article  Google Scholar 

  39. M.H. Yoo: Metall. Mater. Trans. A, 1981, vol. 12, pp. 409-418.

    Article  Google Scholar 

  40. S.R. Kalidindi, A.A. Salem and R.D. Doherty: Adv. Eng. Mater., 2003, vol. 5, pp. 229-32.

    Article  Google Scholar 

  41. N.E. Paton and W.A. Backofen: Metall. Mater. Trans. B, 1970, vol. 1, pp. 2839-47.

    Google Scholar 

  42. T.U. Seidel and A.P. Reynolds: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2879-84.

    Article  Google Scholar 

  43. S. Agarwal, C.L. Briant, L.G. Hector Jr. and Y.L. Chen: J. Mater. Eng. Perform., 2007, vol. 16, pp. 391-403.

    Article  Google Scholar 

  44. J.Q. Su, T.W. Nelson and C.J. Sterling: Mater. Sci. Eng. A, 2005, vol. 405, pp. 277-86.

    Article  Google Scholar 

  45. P.B. Prangnell and C.P. Heason: Acta Mater., 2005, vol. 53, pp. 3179-92.

    Article  Google Scholar 

  46. C.G. Rhodes, M.W. Mahoney, W.H. Bingel and C. Calabrese: Scripta Mater., 2003, vol. 48, pp. 1451-55.

    Article  Google Scholar 

  47. J.Q. Su, T.W. Nelson and C.J. Sterling: Phil. Mag., 2006, vol. 86, pp. 1-24.

    Article  Google Scholar 

  48. R. Bauri, D. Yadav, C.N.S. Kumar and B. Balaji: Mater. Sci. Eng. A, 2015, vol. 620, pp. 67-75.

    Article  Google Scholar 

  49. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd eds., Elsevier, Oxford, 2004, pp. 448, 368.

  50. E.A. Brandes and G.B. Brook (Eds.): Smithell’s Metals Reference Book, 7th Ed., Butterworth and Heinemann, Oxford, 1992, pp. 14.

  51. D. Yadav and R. Bauri: Mater. Sci. Eng. A 2011, vol. 528, pp.1326-1333.

    Article  Google Scholar 

  52. D. Yadav and R. Bauri: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1116-1124.

    Article  Google Scholar 

  53. I. Charit and R.S. Mishra: Scripta Mater., 2008, vol. 58, pp. 367-71.

    Article  Google Scholar 

  54. S. Mironov, K. Masaki, Y.S. Sato and H. Kokawa: Metall. Mater. Trans. A, 2013, vol. 44, pp. 1153-57.

    Article  Google Scholar 

  55. E.M. Taleff and N.A. Pedrazas: Science, 2013, vol. 341, pp. 1461-62.

    Article  Google Scholar 

  56. T. Omori, T. Kusama, S. Kawata, I. Ohnuma, Y.Sutou, Y. Araki, K. Ishida and R. Kainuma: Science, 2013, vol. 341, pp. 1500-02.

    Article  Google Scholar 

  57. D.J. Srolovitz, G.S. Grest and M.P. Anderson: Acta Metall., 1985, vol. 33, pp. 2233-47.

    Article  Google Scholar 

  58. Y. Morisada, H. Fujii, T. Nagaoka and M. Fukusumi: Mater. Sci. Eng. A, 2006, vol. 433, pp. 50-54.

    Article  Google Scholar 

  59. T. Marr, J. Freudenberger, A. Kauffmann, J. Romberg, I. Okulov, R. Petters, J. Scharnweber, A. Eschke, C.G. Oertel, U. Kühn, J. Eckert, W. Skrotzki and L. Schultz: Metals, 2013, vol. 3, pp. 188-201.

    Article  Google Scholar 

  60. L. Xu, Y.Y. Cui, Y.L. Hao and R. Yang: Mater. Sci. Eng. A, 2006, vol. 435-436, pp. 638-47.

    Article  Google Scholar 

  61. D. Yang, P. Hodgson and C. Wen: Intermetallics, 2009, vol. 17, pp. 727-32.

    Article  Google Scholar 

  62. A.D. Smigelskas and E.O. Kirkendall: Tran. Am. Inst. Min., Metall. Pet. Eng., 1947, vol. 171, pp. 130-42.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Faculty at the Materials Joining Laboratory, IIT Madras, for providing access to the NRB-supported FSP facility. The authors thank T. Sturm for experimental assistance with the FIB lift-out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devinder Yadav.

Additional information

Manuscript submitted September 10, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D., Bauri, R., Kauffmann, A. et al. Al-Ti Particulate Composite: Processing and Studies on Particle Twinning, Microstructure, and Thermal Stability. Metall Mater Trans A 47, 4226–4238 (2016). https://doi.org/10.1007/s11661-016-3597-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3597-1

Keywords

Navigation