Skip to main content

Advertisement

Log in

Effect of Plastic Pre-straining on Residual Stress and Composition Profiles in Low-Temperature Surface-Hardened Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present work deals with the evaluation of the residual stress profiles in expanded austenite by applying grazing incidence X-ray diffraction (GI-XRD) combined with successive sublayer removal. Annealed and deformed (ε eq=0.5) samples of stable stainless steel EN 1.4369 were nitrided or nitrocarburized. The residual stress profiles resulting from the thermochemical low-temperature surface treatment were measured. The results indicate high-residual compressive stresses of several GPa’s in the nitrided region, while lower-compressive stresses are produced in the carburized case. Plastic deformation in the steel prior to thermochemical treatment has a hardly measurable influence on the nitrogen-rich zone, while it has a measurable effect on the stresses and depth of the carbon-rich zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.S. Burnell and P.K. Datta: Surface Engineering Casebook, 1st ed., Woodhead Publishing Ltd, Cambridge, 1996.

    Book  Google Scholar 

  2. V. Hauk: Structural and Residual Stress Analysis by Nondestructive Methods, Elsevier, New York, 1997.

    Google Scholar 

  3. T. Bell: Key Eng. Mater., 2008, vol. 373–374, pp. 289–95.

    Article  Google Scholar 

  4. H. Dong: Int. Mater. Rev., 2010, vol. 55, pp. 65–98.

    Article  Google Scholar 

  5. T.L. Christiansen and M.A.J. Somers: Int. J. Mater. Res. Former. Zeitschrift Fuer Met., 2009, vol. 100, pp. 1361–77.

    Article  Google Scholar 

  6. [6] T.L. Christiansen and M.A.J. Somers: Scr. Mater., 2004, vol. 50, pp. 35–37.

    Article  Google Scholar 

  7. T.L. Christiansen, M.A.J. Somers, and A Sample Preparation: Metall. Mater. Trans. A, 2006, vol. 37, pp. 675–82.

    Article  Google Scholar 

  8. T.L. Christiansen, T S Hummelshøj, and M.A.J. Somers: Surf. Eng., 2010, vol. 26, pp. 242–47.

    Article  Google Scholar 

  9. F.A.P. Fernandes, T.L. Christiansen, G. Winther, and M.A.J. Somers: Acta Mater., 2015, vol. 94, pp. 271–80.

    Article  Google Scholar 

  10. S. Jegou, T.L. Christiansen, M. Klaus, C. Genzel, and M.A.J. Somers: Thin Solid Films, 2013, vol. 530, pp. 71–76.

    Article  Google Scholar 

  11. T.L. Christiansen and M.A.J Somers: Mater. Sci. Eng. A, 2006, vol. 424, pp. 181–89.

    Article  Google Scholar 

  12. B. Brink, K. Ståhl, T.L. Christiansen, and M.A.J. Somers: J. Appl. Crystallogr., 2014, vol. 47, pp. 819–26.

    Article  Google Scholar 

  13. B. Brink, K. Ståhl, T.L. Christiansen, C. Frandsen, M.F. Hansen, and M.A.J. Somers: Acta Mater., 2016, vol. 106, pp. 32–39.

    Article  Google Scholar 

  14. T.L. Christiansen and M.A.J. Somers: Mater. Sci. Forum, 2004, vol. 443–444, pp. 91–94.

    Article  Google Scholar 

  15. T.L. Christiansen and M.A.J. Somers: Metall. Mater. Trans. A, 2008, vol. 40, pp. 1791–98.

    Google Scholar 

  16. M.A.J Somers and E.J Mittemeijer: Metall. Trans. A, 1990, Vol. 21A, pp. 189–204.

    Article  Google Scholar 

  17. F. Bottoli, G. Winther, T.L. Christiansen, and M.A.J. Somers: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2579–90.

    Article  Google Scholar 

  18. F. Bottoli, G. Winther, T.L. Christiansen, and M.A.J. Somers: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5201–16.

    Article  Google Scholar 

  19. F. Bottoli, G. Winther, T.L. Christiansen, K.V. Dahl, and M.A.J. Somers: Metall. Mater. Trans. A, 2016, DOI:10.1007/s11661-016-3559-7.

  20. B.E. Warren: X-Ray Diffraction, Courier Dover Publications, New York, 1969.

    Google Scholar 

  21. U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, and E.J. Mittemeijer: J. Appl. Crystallogr., 2005, vol. 38, pp. 1–29.

    Article  Google Scholar 

  22. A. Kumar, U. Welzel, and E.J. Mittemeijer: J. Appl. Crystallogr., 2006, vol. 39, pp. 633–46.

    Article  Google Scholar 

  23. W. Voigt: Lehrbuch Der Kristallphysik, Teubner, Leipzig, 1910.

    Google Scholar 

  24. A. Reuss: Z. Angew. Math, Mech., 1929, vol. 9, p. 49.

    Article  Google Scholar 

  25. H. Neerfeld: Mitt. K. Wilh.Inst. Eisenforschg., 1942, vol. 24, pp. 61–70.

    Google Scholar 

  26. R. Hill: Proc.Phys. Soc. London, 1952, vol. 65, pp. 349–54.

    Article  Google Scholar 

  27. R.W. Wook and F. Witt: J. Appl. Phys., 1965, vol. 7, pp. 2169–71.

    Google Scholar 

  28. E. Kröner: Z. Phys., 1958, vol. 151, pp. 504–18.

    Article  Google Scholar 

  29. J.D. Eshelby: Proc. R. Soc. A., 1957, vol. 241, pp. 376–96.

    Article  Google Scholar 

  30. J.C. Stinville, C. Tromas, P. Villechaise, and C. Templier: Scr. Mater., 2011, vol. 64, pp. 37–40.

    Article  Google Scholar 

  31. T. Takahashi, J. Burghaus, D. Music, R. Dronskowski, and J.M. Schneider: Acta Mater., 2012, vol. 60, pp. 2054–60.

    Article  Google Scholar 

  32. M.G. Moore and W.P. Evans: SAE Trans., 1958, vol. 66, pp. 341–45.

  33. J.C. Stinville, P. Villechaise, C. Templier, J.P. Rivière, and M. Drouet: Acta Mater., 2010, vol. 58, pp. 2814–21.

    Article  Google Scholar 

  34. C. Templier, J.C. Stinville, P. Villechaise, P.O. Renault, G. Abrasonis, J.P. Rivière, a. Martinavičius, and M. Drouet: Surf. Coat. Technol., 2010, vol. 204, pp. 2551–58.

    Article  Google Scholar 

  35. G. Winther, L. Margulies, S. Schmidt, and H.F. Poulsen: Acta Mater., 2004, vol. 52, pp. 2863–72.

    Article  Google Scholar 

  36. H.F. Poulsen, L. Margulies, S. Schmidt, and G. Winther: Acta Mater., 2003, vol. 51, pp. 3821–30.

    Article  Google Scholar 

  37. R. Pokharel, J. Lind, A.K. Kanjarla, R.A. Lebensohn, S.F. Li, P. Kenesei, R.M. Suter, and A.D. Rollett: Annu. Rev. Condens. Matter Phys., 2014, vol. 5, pp. 317–46.

    Article  Google Scholar 

  38. J.C. Stinville, J. Cormier, C. Templier, and P. Villechaise: Acta Mater., 2015, vol. 83, pp. 10–16.

    Article  Google Scholar 

  39. J. Oddershede, J.P. Wright, A. Beaudoin, and G. Winther: Acta Mater., 2015, vol. 85, pp. 301–13.

    Article  Google Scholar 

  40. G. Winther: Acta Mater., 2008, vol. 56, pp. 1919–32.

    Article  Google Scholar 

  41. F.N. Jespersen, J.H. Hattel, and M.A.J. Somers: Proceedings ASM Heat Treat. 2015, Detroit, 2015, pp. 606–11.

  42. F.N. Jespersen, J.H. Hattel, and M.A.J. Somers: Model. Simul. Mater. Sci. Eng., 2016, vol. 25, art no. 025003.

Download references

Acknowledgments

For the present research work, the authors would like to express their gratitude to the Research Fund for Coal and Steel for the financial support to the Press Perfect project. Furthermore, the authors would like to thank Sandvik Materials Technology for providing the EN 1.4369 alloy used in the investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel A. J. Somers.

Additional information

Manuscript submitted November 26, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bottoli, F., Christiansen, T.L., Winther, G. et al. Effect of Plastic Pre-straining on Residual Stress and Composition Profiles in Low-Temperature Surface-Hardened Austenitic Stainless Steel. Metall Mater Trans A 47, 4001–4011 (2016). https://doi.org/10.1007/s11661-016-3586-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3586-4

Keywords

Navigation