Skip to main content
Log in

Influence of Plastic Deformation on Low-Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article addresses an investigation of the influence of plastic deformation on low-temperature surface hardening by gaseous nitriding of two commercial stainless steels: EN 1.4369 and AISI 304. The materials were plastically deformed to several levels of equivalent strain by conventional tensile straining, plane strain compression, and shear. Gaseous nitriding of the strained material was performed in ammonia gas at atmospheric pressure at various temperatures. Microstructural characterization of the as-deformed state and the nitrided case produced included X-ray diffraction analysis, reflected-light microscopy, and microhardness testing. The results demonstrate that a case of expanded austenite develops and that the presence of plastic deformation has a significant influence on the morphology of the nitrided case. The presence of strain-induced martensite favors the formation of CrN, while a high dislocation density in a fully austenitic structure does not lead to such premature nucleation of CrN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. This alloy has no AISI equivalent, but in composition is close to AISI 201.

  2. Since this ferrite is not a result of a martensitic transformation of austenite, but rather a thermally activated decomposition product, it is not referred to as martensite. Nonetheless, it cannot be excluded that nitrogen dissolves into ferrite and leads to a tetragonal distortion of the b.c.c. lattice.

  3. In this respect, it is noted that the deformation response upon uniaxial tension and plane stress compression are essentially equivalent.

References

  1. Z.I. Zhang and T. Bell: Surf. Eng., 1985, vol. 1, pp. 131–36.

    Article  Google Scholar 

  2. T. Bell, K. Mao, and Y. Sun: Surf. Coat. Technol., 1998, vol. 108–109, pp. 360–68.

    Article  Google Scholar 

  3. J.W. Simmons: Mater. Sci. Eng. A, 1996, vol. 207, pp. 159–69.

    Article  Google Scholar 

  4. R.P. Reed: JOM, 1989, vol. 41, pp. 16–21.

    Article  Google Scholar 

  5. D.L. Williamson, O. Ozturk, R. Wei, and P.J. Wilbur: Surf. Coat. Technol., 1994, vol. 65, pp. 15–23.

    Article  Google Scholar 

  6. Z. Yu, X. Xu, L. Wang, J. Qiang, and Z. Hei: Surf. Coat. Technol., 2002, vol. 153, pp. 125–30.

    Article  Google Scholar 

  7. X. Xu, L. Wang, Z. Yu, J. Qiang, and Z. Hei: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1193–99.

    Article  Google Scholar 

  8. H. Dong: Int. Mater. Rev., 2010, vol. 55, pp. 65–98.

    Article  Google Scholar 

  9. T.L. Christiansen and M.A.J. Somers: Int. J. Mater. Res. Former. Zeitschrift Fuer Met., 2009, vol. 100, pp. 1361–77.

  10. T.L. Christiansen, T.S. Hummelshøj, and M.A.J. Somers: Surf. Eng., 2010, vol. 26, pp. 242–47.

    Article  Google Scholar 

  11. T.L. Christiansen and M.A.J. Somers: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 675–82.

    Article  Google Scholar 

  12. Y. Cao, F. Ernst, and G.M Michal: Acta Mater., 2003, vol. 51, pp. 4171–81.

    Article  Google Scholar 

  13. Y. Sun and T. Bell: Wear, 1998, vol. 218, pp. 34–42.

    Article  Google Scholar 

  14. C.X. Li, and T. Bell: Corros. Sci., 2004, vol. 46, pp. 1527–47.

    Article  Google Scholar 

  15. M.K. Lei and X.M. Zhu: Surf. Coat. Technol., 2005, vol. 193, pp. 22–28.

    Article  Google Scholar 

  16. W. Liang, X. Bin, Y. Zhiwei, and S. Yaqin: Surf. Coat. Technol., 2000, vol. 130, pp. 304–308.

    Article  Google Scholar 

  17. T. Thiriet, T. Czerwiec, D. Hertz, G. Marcos, T. Toll-Duchanoy, S. Migot, B. Brugier, M. Foucault, and T. Belmonte: Defect Diffus. Forum, 2012, vol. 323-325, pp. 471–76.

    Article  Google Scholar 

  18. M. Chemkhi, D. Retraint, A. Roos, C. Garnier, L. Waltz, C. Demangel, and G. Proust: Surf. Coat. Technol., 2013, vol. 221, pp. 191–95.

    Article  Google Scholar 

  19. T. Balusamy, T.S.N. Sankara Narayanan, K. Ravichandran, I.S. Park, and M.H. Lee: Corros. Sci., 2013, vol. 74, pp. 332–44.

    Article  Google Scholar 

  20. Standard Test Methods for Tension Testing of Metallic Materials, E8M-04: ASTM International, United States, 2013.

  21. J. Post: Report RFSR-CT-2012-00021, Drachten/Netherlands, 2013, p. D 3.1.

  22. G.W. Rowe: Elements of Metalworking Theory, Hodder Arnold, London, 1979, p. 144.

    Google Scholar 

  23. Th.H. de Keijser, J.I. Langford, E.J. Mittemeijer, and B.P. Vogels: J. Appl. Crystallogr., 1982, vol. 15, pp. 308–14.

  24. J.I. Langford: J. Appl. Crystallogr., 1978, vol. 11, pp. 10–14.

    Article  Google Scholar 

  25. C. Templier, J.C. Stinville, P. Villechaise, P.O. Renault, G. Abrasonis, J.P. Rivière, A. Martinavičius, and M. Drouet: Surf. Coat. Technol., 2010, vol. 204, pp. 2551–58.

    Article  Google Scholar 

  26. J.O. Nilsson, A. Hultin Stigenberg, and P. Liu: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2225–33.

    Article  Google Scholar 

  27. T.L. Christiansen, K. V. Dahl, and M.A.J. Somers: Mater. Sci. Technol., 2008, vol. 24, pp. 159–67.

    Article  Google Scholar 

  28. T.L. Christiansen, and M.A.J. Somers: Metall. Mater. Trans. A, 2008, vol. 40A, pp. 1791–98.

    Google Scholar 

  29. F.A.P. Fernandes, T.L. Christiansen, and M.A.J. Somers: Adv. Mater. Res., 2014, vol. 996, pp. 155–61.

    Article  Google Scholar 

  30. J.L. Meijering: Acta Metall., 1966, vol. 14, pp. 251–58.

    Article  Google Scholar 

  31. K. H. Jack: Acta Crystallogr., 1952, vol. 5, pp. 404–11.

    Article  Google Scholar 

  32. R. Hales and A.C. Hill: Met. Sci., 1977, vol. 11, pp. 241–44.

    Article  Google Scholar 

  33. J.R.G. Da Silva and R.B. McLellan: Mater. Sci. Eng., 1976, vol. 26, pp. 83–87.

    Article  Google Scholar 

  34. K.H. Jack: R. Soc., 1951, vol. 208, pp. 200–15.

    Article  Google Scholar 

  35. M.A.J. Somers, R.M. Lankreijer, and E.J. Mittemeijer: Philos. Mag. A, 1989, vol. 59, pp. 353–78.

    Article  Google Scholar 

Download references

Acknowledgments

For the present research work, the authors gratefully acknowledge the Research Fund for Coal and Steel for the financial support to the PressPerfect project. Furthermore, the authors would like to thank Sandvik Materials Technology for providing part of the materials used during the investigation and M2i-University of Twente for providing the shear-deformed samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Federico Bottoli or Marcel A. J. Somers.

Additional information

Manuscript submitted September 10, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bottoli, F., Winther, G., Christiansen, T.L. et al. Influence of Plastic Deformation on Low-Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding. Metall Mater Trans A 46, 2579–2590 (2015). https://doi.org/10.1007/s11661-015-2832-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2832-5

Keywords

Navigation