Skip to main content
Log in

Influence of Microstructure and Process Conditions on Simultaneous Low-Temperature Surface Hardening and Bulk Precipitation Hardening of Nanoflex®

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Precipitation hardening martensitic stainless steel Nanoflex was low-temperature nitrided or nitrocarburized. In these treatments, simultaneous hardening of the bulk, by precipitation hardening, and the surface by dissolving nitrogen/carbon can be obtained because the treatment temperatures and times for these essentially different hardening mechanisms are compatible. The effect of the processing history of the steel on the nitrided/nitrocarburized case was investigated by varying the amounts of austenite and martensite through variation of the degree of plastic deformation by tensile strain, deep cooling, and deliberate manipulation of the austenite stability. The nitrided/nitrocarburized case was investigated with reflected light microscopy, hardness-depth profiling, X-ray diffraction analysis, and glow discharge optical emission spectroscopy. The results demonstrate that a microstructure consisting of martensite results in the deepest nitrided case, while a shallow case develops on a microstructure consisting of austenite. For an initial microstructure consisting of both martensite and austenite a non-uniform case depth is achieved. Simultaneous bulk and surface hardening is only possible for martensite because the precipitation hardening does not occur in an austenite matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Nanoflex is a registered trademark of Sandvik Materials Technology.

  2. The amount of isothermal martensite that develops in 1 hour is about 20 pct, while 10 hours is needed to reach 50 pct isothermal transformation.

References

  1. B.H. Kolster: VDI. Ber., 1983, vol. 506, p. 107.

    Google Scholar 

  2. Y. Sun, X. Li, and T. Bell: Mater. Sci. Technol., 1999, vol. 15, pp. 1171–78.

    Article  Google Scholar 

  3. Y. Sun, T. Bell, Z. Kolosvary, and J. Flis: Met. Sci. Heat Treat., 1999, vol. 26, p. 9.

    Google Scholar 

  4. Christiansen TL, Somers MAJ (2009) Int. J. Mater. Res. Former. Zeitschrift Fuer Met. 100:1361–77.

    Article  Google Scholar 

  5. S.K. Kim, J.S. Yoo, J.M. Priest, and M.P. Fewell: Surf. Coat. Technol., 2003, vol. 163–164, pp. 380–85.

    Article  Google Scholar 

  6. A. Leyland, D.B. Lewis, P.R. Stevenson, and A. Matthews: Surf. Coat. Technol., 1993, vol. 62, pp. 608–17.

    Article  Google Scholar 

  7. R.B. Frandsen, T.L. Christiansen, and M.A.J.Somers: Surf. Coatings Technol., 2006, vol. 200, pp. 5160–69.

    Article  Google Scholar 

  8. M. Esfandiari, and H. Dong: Surf. Coat. Technol., 2007, vol. 201, pp. 6189–96.

    Article  Google Scholar 

  9. R.L. Liu, and M.F. Yan: Surf. Coatings Technol., 2010, vol. 204, pp. 2251–56.

    Article  Google Scholar 

  10. [10] P. Kochmanski, and J. Nowacki: Surf. Coatings Technol., 2008, vol. 202, pp. 4834–38.

    Article  Google Scholar 

  11. P. Kochmański, and J. Nowacki: Surf. Coatings Technol., 2006, vol. 200, pp. 6558–62.

    Article  Google Scholar 

  12. J. Post, H. Nolles, K. Datta, and H.J.M. Geijselaers: Mater. Sci. Eng. A, 2008, vol. 498, pp. 179–90.

    Article  Google Scholar 

  13. J. Post, K. Datta, and J. Huetink: in Int. Conf. Numer. Methods Ind. Form. Process., UT Publications, 2004, pp. 1670–75.

  14. J. Post, K. Datta, and J. Beyer: Mater. Sci. Eng. A, 2008, vol. 485, pp. 290–98.

    Article  Google Scholar 

  15. C. Irander and G. Berglund: Sandvik Nanoflex ® —Designed for Ultimate Performance, 2006.

  16. I. Tamura: Met. Sci., 1982, vol. 16, pp. 245–53.

    Article  Google Scholar 

  17. 17.M. Holrnquist, J. Nilsson, and A. Hultin Stigenberg (1995) Scripta Metall. Mater. 33:1367–73.

    Google Scholar 

  18. G.B. Olson, and M. Cohen: Metall. Trans. A, 1975, vol. 6, pp. 791–95.

    Article  Google Scholar 

  19. G.B. Olson, and M. Cohen: J. Less Common Met., 1972, vol. 28, pp. 107–18.

    Article  Google Scholar 

  20. S.S. Hecker, and M.G. Stout: Metall. Trans. A, 1982, vol. 13, pp. 619–26.

    Article  Google Scholar 

  21. J.A.C. Ramirez, T. Tsuta, Y. Mitani, and K. Osakada: JSME Int., 1992, vol. 35.

  22. Goldfarb RB, Reed RP (1984) Adv. Cryog. Eng. Mater. 30:475–82.

    Article  Google Scholar 

  23. J. Stickforth: Techn. Mitt. Krupp, 1966, vol. 24, pp. 89–102.

    Google Scholar 

  24. P. Liu, A. Hultin Stigenberg, and J.O. Nilsson: Scr. Metall. Mater., 1994, vol. 31, pp. 249–54.

    Article  Google Scholar 

  25. J. O. Nilsson, A. Hultin Stigenberg, and P. Liu: Metall. Mater. Trans. A, 1994, vol. 25, pp. 2225–33.

    Article  Google Scholar 

  26. M. Thuvander, M. Andersson, and K. Stiller: Mater. Sci. Technol., 2012, vol. 28, pp. 695–701.

    Article  Google Scholar 

  27. K. Stiller, F. Danoix, and A. Bostel: Appl. Surf. Sci., 1996, vol. 94–95, pp. 326–33.

    Article  Google Scholar 

  28. Z. Guo, W. Sha, and E.A. Wilson: Mater. Sci. Technol., 2002, vol. 18, pp. 377–82.

    Article  Google Scholar 

  29. Z.I. Zhang, and T. Bell: Surf. Eng., 1985, vol. 1, pp. 131–36.

    Article  Google Scholar 

  30. D.L. Williamson, O. Ozturk, R. Wei, and P.J. Wilbur: Surf. Coatings Technol., 1994, vol. 65, pp. 15–23.

    Article  Google Scholar 

  31. Li CX, Bell T (2004) Corros. Sci. 46:1527–47.

    Article  Google Scholar 

  32. M.K. Lei, and X.M. Zhu: Surf. Coatings Technol., 2005, vol. 193, pp. 22–28.

    Article  Google Scholar 

  33. W. Liang, X. Bin, Y. Zhiwei, and S. Yaqin: Surf. Coatings Technol., 2000, vol. 130, pp. 304–8.

    Article  Google Scholar 

  34. Y. Sun, and T. Bell: Wear, 1998, vol. 218, pp. 34–42.

    Article  Google Scholar 

  35. T.L. Christiansen, and M.A.J. Somers: Metall. Mater. Trans. A, 2008, vol. 40, pp. 1791–98.

    Article  Google Scholar 

  36. T.L. Christiansen, K.V. Dahl, and M.A.J. Somers: Mater. Sci. Technol., 2008, vol. 24, pp. 159–67.

    Article  Google Scholar 

  37. F.A.P. Fernandes, T.L. Christiansen, and M.A.J. Somers: Adv. Mater. Res., 2014, vol. 996, pp. 155–61.

    Article  Google Scholar 

  38. T. Bell, J. Lanagan, P.H Morton, H.W. Bergmann, and A.M. Staines: Surf. Eng., 1986, vol. 2, pp. 133–43.

    Article  Google Scholar 

  39. M. Villa, M. F. Hansen, K. Pantleon, and M. A. J. Somers: Mater. Sci. Technol., 2015, vol. 31, pp. 115–22.

    Article  Google Scholar 

  40. ASTM International: Standard Test Methods for Tension Testing of Metallic Materials [Metric], 2004, p.E 8M-04.

  41. P.C. Van Wiggen, H.C.F. Rozendaal, and E.J. Mittemeijer: J. Mater. Sci., 1985, vol. 20, pp. 4561–82.

    Article  Google Scholar 

  42. P.M. Hekker, H.C.F Rozendaal, and E.J. Mittemeijer: J. Mater. Sci., 1985, vol. 20, pp. 718–29.

    Article  Google Scholar 

  43. R. Hales, and A.C. Hill: Met. Sci., 1977, vol. 11, pp. 241–44.

    Article  Google Scholar 

  44. J.R.G. Da Silva, and R.B. McLellan: Mater. Sci. Eng., 1976, vol. 26, pp. 83–87.

    Article  Google Scholar 

  45. F. Bottoli, G. Winther, T.L. Christiansen, and M.A.J. Somers: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2579–90.

    Article  Google Scholar 

  46. M.A.J. Somers, R.M. Lankreijer, and E.J. Mittemeijer: Philos. Mag. A, 1989, vol. 59, pp. 353–78.

    Article  Google Scholar 

  47. F.A.P. Fernandes, T.L. Christiansen, and M.A.J. Somers: Proc. 28th Int. Conf. Surf. Modif. Technol., Valardocs, Tampere, Finland, 2014, pp. 223–33.

  48. Oddershede J, Christiansen TL, Ståhl K, Somers MAJ (2010) Scr. Mater., 62:290–93.

    Article  Google Scholar 

  49. H. Dong: Int. Mater. Rev., 2010, vol. 55, pp. 65–98.

    Article  Google Scholar 

  50. [50] M. Tsujikawa, N. Yamauchi, N. Ueda, T. Sone, and Y. Hirose: Surf. Coatings Technol., 2005, vol. 193, pp. 309–13.

    Article  Google Scholar 

  51. C. Blawert, B.L. Mordike, G.A. Collins, K.T Short, and Y. Jiraskova: Surf. Coatings Technol., 2000, vol. 128-129, pp. 219–25.

    Article  Google Scholar 

  52. M.A.J Somers and T.L. Christiansen: J. Phase Equilibria Diffus., 2005, vol. 26, pp. 520–28.

    Article  Google Scholar 

  53. K. Stiller, F. Danoix, and M. Hättestrand: Mater. Sci. Eng. A, 1998, vol. 250, pp. 22–26.

    Article  Google Scholar 

  54. M. Andersson, K. Stiller, and M. Hättestrand: Surf. Interface Anal., 2007, vol. 39, pp. 195–200.

    Article  Google Scholar 

  55. D.B. Wiles and R.A. Young: J. Appl. Crystallogr., 1981, vol. 14, pp. 149–51.

    Article  Google Scholar 

  56. R.J. Hill and C.J. Howard: Australian Atomic Energy Commission (now ANSTO) Report No. M112, New South Wales, 1986.

Download references

Acknowledgments

For the present research work, the authors gratefully acknowledge the Research Fund for Coal and Steel for the financial support to the PressPerfect project. Furthermore, the authors would like to thank Sandvik Materials Technology for providing the materials used in the experimental activity. Dr. Kristian Vinter Dahl is acknowledged for the ThermoCalc simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel A. J. Somers.

Additional information

Manuscript submitted February 24, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bottoli, F., Winther, G., Christiansen, T.L. et al. Influence of Microstructure and Process Conditions on Simultaneous Low-Temperature Surface Hardening and Bulk Precipitation Hardening of Nanoflex® . Metall Mater Trans A 46, 5201–5216 (2015). https://doi.org/10.1007/s11661-015-3088-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3088-9

Keywords

Navigation