Skip to main content
Log in

Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy

  • Symposium: Micromechanics of Advanced Materials III in Honor of J.C.M. Li
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nanoindentation creep behavior was studied on a coarse-grained Al0.3CoCrFeNi high-entropy alloy with a single face-centered cubic structure. The effects of the indentation size and loading rate on creep behavior were investigated. The experimental results show that the hardness, creep depth, creep strain rate, and stress exponent are all dependent on the holding load and loading rate. The creep behavior shows a remarkable indentation size effect at different maximum indentation loads. The dominant creep mechanism is dislocation creep at high indentation loads and self-diffusion at low indentation loads. An obvious loading rate sensitivity of creep behavior is found under different loading rates for the alloy. A high loading rate can lead to a high strain gradient, and numerous dislocations emerge and entangle together. Then during the holding time, a large creep deformation characteristic with a high stress exponent will happen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang: Advanced Engineering Materials, 2004, vol. 6, pp. 299-303.

    Article  Google Scholar 

  2. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent: Materials Science and Engineering: A, 2004, vol. 375, pp. 213-218.

    Article  Google Scholar 

  3. Y. Zhang, T. T. Zuo, Z. Tang, C. G. Michael, K. A. Dahmen, P. K. Liaw, and Z. P. Lu: Progress in Materials Science, 2014, vol. 61, pp. 1-93.

    Article  Google Scholar 

  4. K. Zhao, X. X. Xia, H. Y. Bai, D. Q. Zhao, and W. H. Wang: Appl Phys Lett, 2011, vol. 98, pp. 141913.

    Article  Google Scholar 

  5. S. Guo, Q. Hu, C. Ng, and C. T. Liu: Intermetallics, 2013, vol. 41, pp. 96-103.

    Article  Google Scholar 

  6. J.Y. He, H. Wang, H. L. Huang, X. D. Xu, M. W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z. P. Lu: Acta Materialia, 2016, vol. 102, pp. 187-196.

    Article  Google Scholar 

  7. B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie: Science, 2014, vol. 345, pp.1153-1158.

    Article  Google Scholar 

  8. O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, and P. K. Liaw: Intermetallics, 2010, vol. 18(9), pp. 1758-1765.

    Article  Google Scholar 

  9. Z. Tang, T. Yuan, C. W. Tsai, J. W. Yeh, C. D. Lundin, and P. K. Liaw: Acta Materialia, 2015, vol. 99, pp. 247-258.

    Article  Google Scholar 

  10. M. H. Chuang, M. H. Tsai, W. R. Wang, S. J. Lin, and J. W. Yeh: Acta Mater, 2011, vol. 59, pp. 6308-6317.

    Article  Google Scholar 

  11. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw: Advanced Engineering Materials, 2008, vol. 10(6), pp. 534-538.

    Article  Google Scholar 

  12. Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P. K. Liaw: Scientific Reports, 2013, vol. 3.

  13. M. A. Hemphill, T. Yuan, G. Y. Wang, J. W. Yeh, C. W. Tsai, A. Chuang, and P. K. Liaw: Acta Materialia, 2012, vol. 60, pp. 5723-5734.

    Article  Google Scholar 

  14. M. Seifi, D. Li, Z. Yong, P. K. Liaw, and J. J. Lewandowski: JOM, 2015, vol. 67, pp. 2288-2295.

    Article  Google Scholar 

  15. Y. F. Kao, T. J. Chen, S. K. Chen, and J. W. Yeh: Journal of Alloys and Compounds, 2009, vol. 488, pp. 57-64.

    Article  Google Scholar 

  16. W. R. Wang, W. L. Wang, and J. W. Yeh: Journal of Alloys and Compounds, 2014, vol. 589, pp. 143-152.

    Article  Google Scholar 

  17. N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky, E. E. Oleynik, A. S. Tortika, and O. N. Senkov,: Journal of Alloys and Compounds, 2015, vol. 628, pp. 170-185.

    Article  Google Scholar 

  18. W. H. Liu, J. Y. He, H. L. Huang, H. Wang, Z. P. Lu, and C. T. Liu: Intermetallics, 2015, vol. 60, pp. 1-8.

    Article  Google Scholar 

  19. Y. J. Zhou, Y. Zhang, Y. L. Wang, and G. L. Chen: Appl. Phys. Lett, 2007, vol. 90, pp. 181904.

    Article  Google Scholar 

  20. C.Y. Hsu, C.C. Juan, W.R. Wang, T.S. Sheu, J.W. Yeh, and S.K. Chen (2011) Mater. Sci. Eng. A, 528:3581-3588.

    Article  Google Scholar 

  21. P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, and J. Dolinšek: Phys. Rev. Lett, 2014, vol. 113, pp. 107001.

    Article  Google Scholar 

  22. S. Q. Wang: AIP Adv, 2013, vol. 3(10), pp. 842-852.

    Google Scholar 

  23. Y. F. Kao, S. K. Chen, J. H. Sheu, J. T. Lin, W. E. Lin, J. W. Yeh, S. J. Lin, T. H. Liou, and C. W. Wang: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 9046-9059.

    Article  Google Scholar 

  24. V. Braic, M. Balaceanu, M. Braic, A. Viadescu, S. Panseri, and A. Russo (2012) J. Mechl Behav, Biomed. Mater, 10: 197-205.

    Article  Google Scholar 

  25. Z. H. Cao, P. Y. Li, H. M. Lu, Y. L. Huang, Y. C. Zhou, and X. K. Meng: Scripta Materialia, 2009, vol. 60, pp. 415-418.

    Article  Google Scholar 

  26. Y. J. Huang, J. Shen, Y. L. Chiu, J. J. J. Chen, and J. F. Sun: Intermetallics, 2009, vol. 17, pp. 190-194.

    Article  Google Scholar 

  27. Z. S. Ma, S. G. Long, Y. Pan, Y. C. Zhou: J Mater Sci, 2008, vol. 43, pp. 5952-5955.

    Article  Google Scholar 

  28. W.C. Oliver, G.M. Pharr: J. Mater. Res, 1992, vol. 7, pp. 1564-1583.

    Article  Google Scholar 

  29. C. L. Wang, M. Zhang, and T. G. Nieh: J. Phys. D: Appl. Phys, 2009, vol. 42, pp. 115405.

    Article  Google Scholar 

  30. W. B. Li, J. L. Henshall, R. M. Hooper, and K. E. Easterling: Acta metallurgica et materialia, 1991, vol. 39, pp. 3099-3110.

    Article  Google Scholar 

  31. P. F. Yu, S. D. Feng, G. S. Xu, X. L. Guo, Y. Y. Wang, W. Zhao, L. Qi, G. Li, P. K. Liaw, and R. P. Liu: Scripta Materialia, 2014, vol. 90-91, pp. 45-48.

    Google Scholar 

  32. Z. S. Ma, S. G. Long, Y. C. Zhou, and Y. Pan: Scripta Materialia, 2008, vol. 59, pp. 195-198.

    Article  Google Scholar 

  33. F. Wang, P. Huang, and K. W. Xu: Appl. Phys. Lett., 2007, vol. 90, pp. 161921.

    Article  Google Scholar 

  34. H. Li, A. H. W. Ngan: J. Mater. Res, 2004, vol. 19(2), pp. 513-522.

    Article  Google Scholar 

  35. S. R. Jian, G. J. Chen, and J. Y. Juang: Current Opinion in Solid State & Materials Science, 2010, vol. 14, pp. 69-74.

    Article  Google Scholar 

  36. S. J. Bull: J. Phys. D: Appl. Phys, 2005, vol. 38, pp. 393-413.

    Article  Google Scholar 

  37. J. E. Bradby, S. O. Kucheyev, J. S. Williams, J. Wong-Leung, M. V. Swain, P. Munroe, G. Li, and M. R. Phillips: Appl. Phys. Lett, 2002, vol. 80, pp. 383-385.

    Article  Google Scholar 

  38. S. R. Jian: Journal of Alloys and Compounds, 2015, vol. 644, pp. 54-58.

    Article  Google Scholar 

  39. T. T. Shun, C. H. Hung, and C. F. Lee: Journal of Alloys and Compounds. 2010, vol. 493, pp. 105-109.

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Science Foundation of China (Grant No. 51121061/51171163). Gong Li would like to acknowledge the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20131333110019). Peter K. Liaw would like to acknowledge the U.S. National Science Foundation Project (CMMI-1100080), the U.S. Army Research Office Project (W911NF-13-1-0438) with the program manager, S. N. Mathaudhu, D. M. Stepp, and C. Coohes, and the DOE, Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0008855, DE-FE-0011194, and DE-FE-0024054), with Mr. V. Cedro, Mr. R. Dunst, and Dr. J. Mullen as program managers, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gong Li or Riping Liu.

Additional information

Manuscript submitted December 29, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yu, P., Cheng, H. et al. Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy. Metall Mater Trans A 47, 5871–5875 (2016). https://doi.org/10.1007/s11661-016-3469-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3469-8

Keywords

Navigation