Skip to main content
Log in

Insights into the deformation behavior of the CrMnFeCoNi high-entropy alloy revealed by elevated temperature nanoindentation

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A CrMnFeCoNi high-entropy alloy was investigated by nanoindentation from room temperature to 400 °C in the nanocrystalline state and cast plus homogenized coarse-grained state. In the latter case a 〈100〉-orientated grain was selected by electron back scatter diffraction for nanoindentation. It was found that hardness decreases more strongly with increasing temperature than Young’s modulus, especially for the coarse-grained state. The modulus of the nanocrystalline state was slightly higher than that of the coarse-grained one. For the coarse-grained sample a strong thermally activated deformation behavior was found up to 100–150 °C, followed by a diminishing thermally activated contribution at higher testing temperatures. For the nanocrystalline state, different temperature dependent deformation mechanisms are proposed. At low temperatures, the governing processes appear to be similar to those in the coarse-grained sample, but with increasing temperature, dislocation-grain boundary interactions likely become more dominant. Finally, at 400 °C, decomposition of the nanocrystalline alloy causes a further reduction in thermal activation. This is rationalized by a reduction of the deformation controlling internal length scale by precipitate formation in conjunction with a diffusional contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. J-W. Yeh, S-K. Chen, S-J. Lin, J-Y. Gan, T-S. Chin, T-T. Shun, C-H. Tsau, and S-Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).

    Article  CAS  Google Scholar 

  3. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).

    Article  CAS  Google Scholar 

  4. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).

    Article  CAS  Google Scholar 

  5. E.J. Pickering and N.G. Jones: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 6608, 1 (2016).

    Google Scholar 

  6. D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).

    Article  CAS  Google Scholar 

  7. D. Miracle, B. Majumdar, K. Wertz, and S. Gorsse: New strategies and tests to accelerate discovery and development of multi-principal element structural alloys. Scr. Mater. 127, 195 (2017).

    Article  CAS  Google Scholar 

  8. K.G. Pradeep, C.C. Tasan, M.J. Yao, Y. Deng, H. Springer, and D. Raabe: Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Mater. Sci. Eng., A 648, 183 (2015).

    Article  CAS  Google Scholar 

  9. V. Maier-Kiener, B. Schuh, E.P. George, H. Clemens, and A. Hohenwarter: Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys. Mater. Des. 115, 479 (2017).

    Article  CAS  Google Scholar 

  10. A. Gali and E.P. George: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).

    Article  CAS  Google Scholar 

  11. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).

    Article  CAS  Google Scholar 

  12. G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, and E.P. George: Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 623, 348 (2015).

    CAS  Google Scholar 

  13. A. Haglund, M. Koehler, D. Catoor, E.P. George, and V. Keppens: Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures. Intermetallics 58, 62 (2015).

    Article  CAS  Google Scholar 

  14. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).

    Article  CAS  Google Scholar 

  15. F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, and E.P. George: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40 (2016).

    Article  CAS  Google Scholar 

  16. E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, and N.G. Jones: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113, 106 (2016).

    Article  CAS  Google Scholar 

  17. M. Komarasamy, N. Kumar, R.S. Mishra, and P.K. Liaw: Anomalies in the deformation mechanism and kinetics of coarse-grained high entropy alloy. Mater. Sci. Eng., A 654, 256 (2016).

    Article  CAS  Google Scholar 

  18. M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, and S.V. Divinski: Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Compd. 688, 994 (2016).

    Article  CAS  Google Scholar 

  19. L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, and N.G. Jones: An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy. Acta Mater. 122, 11 (2017).

    Article  CAS  Google Scholar 

  20. N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M.T. Chen, H. Matsunoshita, K. Tanaka, H. Inui, and E.P. George: Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci. Rep. 6, 35863 (2016).

    Article  CAS  Google Scholar 

  21. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).

    Article  CAS  Google Scholar 

  22. E.D. Tabachnikova, A.V. Podolskiy, M.O. Laktionova, N.A. Bereznaia, M.A. Tikhonovsky, and A.S. Tortika: Mechanical properties of the CoCrFeNiMnVx high entropy alloys in temperature range 4.2–300 K. J. Alloys Compd. 698, 501 (2017).

    Article  CAS  Google Scholar 

  23. Z. Wu, Y. Gao, and H. Bei: Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys. Acta Mater. 120, 108 (2016).

    Article  CAS  Google Scholar 

  24. S.I. Hong, J. Moon, S.K. Hong, and H.S. Kim: Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy. Mater. Sci. Eng., A 682, 569 (2017).

    Article  CAS  Google Scholar 

  25. I. Toda-Caraballo and P.E.J. Rivera-Díaz-Del-Castillo: Modelling solid solution hardening in high entropy alloys. Acta Mater. 85 (2015).

  26. C. Varvenne, A. Luque, and W.A. Curtin: Theory of strengthening in fcc high entropy alloys. Acta Mater. 118 (2016).

  27. Z. Wu, H. Bei, G.M. Pharr, and E.P. George: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).

    Article  CAS  Google Scholar 

  28. D-H. Lee, I-C. Choi, M-Y. Seok, J. He, Z. Lu, J-Y. Suh, M. Kawasaki, T.G. Langdon, and J-I. Jang: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. J. Mater. Res. 30, 2804 (2015).

    Article  CAS  Google Scholar 

  29. D. Wu, J.S.C. Jang, and T.G. Nieh: Elastic and plastic deformations in a high entropy alloy investigated using a nanoindentation method. Intermetallics 68, 118 (2016).

    Article  CAS  Google Scholar 

  30. D-H. Lee, M-Y. Seok, Y. Zhao, I-C. Choi, J. He, Z. Lu, J-Y. Suh, U. Ramamurty, M. Kawasaki, T.G. Langdon, and J-I. Jang: Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Mater. 109, 314 (2016).

    Article  CAS  Google Scholar 

  31. R. Raghavan, C. Kirchlechner, B.N. Jaya, M. Feuerbacher, and G. Dehm: Mechanical size effects in a single crystalline equiatomic FeCrCoMnNi high entropy alloy. Scr. Mater. 129, 52 (2017).

    Article  CAS  Google Scholar 

  32. H. Zhang, K.W. Siu, W. Liao, Q. Wang, Y. Yang, and Y. Lu: In situ mechanical characterization of CoCrCuFeNi high-entropy alloy micro/nano-pillars for their size-dependent mechanical behavior. Mater. Res. Express 3, 94002 (2016).

    Article  CAS  Google Scholar 

  33. Y. Zou, S. Maiti, W. Steurer, and R. Spolenak: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).

    Article  CAS  Google Scholar 

  34. Y.X. Ye, Z.P. Lu, and T.G. Nieh: Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy. Scr. Mater. 130, 64 (2017).

    Article  CAS  Google Scholar 

  35. Q.F. He, J.F. Zeng, S. Wang, Y.F. Ye, C. Zhu, T.G. Nieh, Z.P. Lu, and Y. Yang: Delayed plasticity during nanoindentation of single-phase CoCrFeMnNi high-entropy alloy. Mater. Res. Lett. 3831, 1 (2016).

    Google Scholar 

  36. C. Zhu, Z.P. Lu, and T.G. Nieh: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 61, 2993 (2013).

    Article  CAS  Google Scholar 

  37. J.M. Wheeler and J. Michler: Invited article: Indenter materials for high temperature nanoindentation. Rev. Sci. Instrum. 84, 101301 (2013).

    Article  CAS  Google Scholar 

  38. W.C. Oliver and G.M. Pharr: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  39. J.M. Wheeler, D.E.J. Armstrong, W. Heinz, and R. Schwaiger: High temperature nanoindentation: The state of the art and future challenges. Curr. Opin. Solid State Mater. Sci. 19, 354 (2015).

    Article  Google Scholar 

  40. V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, and M. Göken: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26, 1421 (2011).

    Article  CAS  Google Scholar 

  41. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: Fcc versus bcc metals. Mater. Sci. Eng., A 381, 71 (2004).

    Article  CAS  Google Scholar 

  42. K. Durst and V. Maier: Dynamic nanoindentation testing for studying thermally activated processes from single to nanocrystalline metals. Curr. Opin. Solid State Mater. Sci. 19, 340 (2015).

    Article  CAS  Google Scholar 

  43. V. Maier, C. Schunk, M. Göken, and K. Durst: Microstructure-dependent deformation behaviour of bcc-metals—Indentation size effect and strain rate sensitivity. Philos. Mag. 95, 1766 (2014).

    Article  CAS  Google Scholar 

  44. J.J. Vlassak and W.D. Nix: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223 (1994).

    Article  Google Scholar 

  45. X. Huang, N. Hansen, and N. Tsuji: Hardening by annealing and softening by deformation in nanostructured metals. Science 312, 249 (2006).

    Article  CAS  Google Scholar 

  46. T. Yu, N. Hansen, X. Huang, and A. Godfrey: Observation of a new mechanism balancing hardening and softening in metals. Mater. Res. Letters, 2, 160 (2014).

    Article  CAS  Google Scholar 

  47. O. Renk, A. Hohenwarter, K. Eder, K.S. Kormout, J.M. Cairney, and R. Pippan: Increasing the strength of nanocrystalline steels by annealing: Is segregation necessary? Scr. Mater. 95, 27 (2015).

    Article  CAS  Google Scholar 

  48. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  49. S. Van Petegem, J. Zimmermann, and H. Van Swygenhoven: Yield point phenomenon during strain rate change in nanocrystalline Ni–Fe. Scr. Mater. 65, 217 (2011).

    Article  CAS  Google Scholar 

  50. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  51. A. Seeger: Temperature and strain-rate dependence of the flow stress of body-centered cubic metals: A theory based on kink–kink interactions. Z. Met. Res. Adv. Tech. 72, 369 (1981).

    CAS  Google Scholar 

  52. H. Conrad: Plastic deformation kinetics in nanocrystalline fcc metals based on the pile-up of dislocations. Nanotechnology 18, 1 (2007).

    Article  CAS  Google Scholar 

  53. Y.J. Li, J. Mueller, H.W. Höppel, M. Göken, and W. Blum: Deformation kinetics of nanocrystalline nickel. Acta Mater. 55, 5708 (2007).

    Article  CAS  Google Scholar 

  54. G. Mohanty, J.M. Wheeler, R. Raghavan, J. Wehrs, M. Hasegawa, S. Mischler, L. Philippe, and J. Michler: Elevated temperature, strain rate jump microcompression of nanocrystalline nickel. Philos. Mag. 95, 1878 (2015).

    Article  CAS  Google Scholar 

  55. H.W. Höppel, J. May, P. Eisenlohr, and M. Göken: Strain-rate sensitivity of ultrafine-grained materials. Z. Metallkd. 96 (6), 566 (2005).

    Article  Google Scholar 

  56. Q. Wei: Strain rate effects in the ultrafine grain and nanocrystalline regimes-influence on some constitutive responses. J. Mater. Sci. 42, 1709 (2007).

    Article  CAS  Google Scholar 

  57. M. Kreuzeder, M-D. Abad, M-M. Primorac, P. Hosemann, V. Maier, and D. Kiener: Fabrication and thermo-mechanical behavior of ultra-fine porous copper. J. Mater. Sci. 50, 634 (2015).

    Article  CAS  Google Scholar 

  58. D. Wu, X.L. Wang, and T.G. Nieh: Variation of strain rate sensitivity with grain size in Cr and other body-centred cubic metals. J. Phys. D: Appl. Phys. 47, 175303 (2014).

    Article  CAS  Google Scholar 

  59. A. Leitner, V. Maier-Kiener, J. Jeong, M.D. Abad, P. Hosemann, S.H. Oh, and D. Kiener: Interface dominated mechanical properties of ultra-fine grained and nanoporous Au at elevated temperatures. Acta Mater. 121, 104 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Funding by the Austrian Science Fund (FWF) in the framework of Research Project P26729-N19 is acknowledged (B.S. & A.H.). Further financial support by the Austrian Federal Government (837900) within the framework of the COMET Funding Program (MPPE, A7.19) is highly appreciated (V.M-K.). E.P.G. is sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Maier-Kiener.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier-Kiener, V., Schuh, B., George, E.P. et al. Insights into the deformation behavior of the CrMnFeCoNi high-entropy alloy revealed by elevated temperature nanoindentation. Journal of Materials Research 32, 2658–2667 (2017). https://doi.org/10.1557/jmr.2017.260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.260

Navigation