Skip to main content
Log in

Effect of Strain-Induced Martensite on Tensile Properties and Hydrogen Embrittlement of 304 Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Room temperature tensile tests have been conducted at different strain rates ranging from 2 × 10−6 to 1 × 10−2/s on hydrogen-free and hydrogen-charged 304 stainless steel (SS). Using a ferritescope and neutron diffraction, the amount of strain-induced martensite (SIM) has been in situ measured at the center region of the gage section of the tensile specimens or ex situ measured on the fractured tensile specimens. The ductility, tensile stress, hardness, and the amount of SIM increase with decreasing strain rate in hydrogen-free 304 SS and decrease in hydrogen-charged one. Specifically, SIM that forms during tensile tests is beneficial in increasing the ductility, strain hardening, and tensile stress of 304 SS, irrespective of the presence of hydrogen. A correlation of the tensile properties of hydrogen-free and hydrogen-charged 304 SS and the amount of SIM shows that hydrogen suppresses the formation of SIM in hydrogen-charged 304 SS, leading to a ductility loss and localized brittle fracture. Consequently, we demonstrate that hydrogen embrittlement of 304 SS is related to hydrogen-suppressed formation of SIM, corresponding to the disordered phase, according to our proposition. Compelling evidence is provided by the observations of the increased lattice expansion of martensite with decreasing strain rate in hydrogen-free 304 SS and its lattice contraction in hydrogen-charged one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch: Trans. ASM, 1967, vol. 60, pp. 252-59.

    Google Scholar 

  2. W.W. Gerberich, P.L. Hemmings, and V.F. Zackay: Met. Trans., 1971, vol. 2, pp. 2243-2253.

    Article  Google Scholar 

  3. W.W. Gerberich, P.L. Hemmings, M.D. Merz, and V.F. Zackay: Trans. Techn. Notes, 1968, vol. 61, pp. 843-847.

    Google Scholar 

  4. P.C. Maxwell, A. Goldberg, and J.C. Shyne: Metall. Trans., 1974, vol. 5, pp. 1319-1324.

    Article  Google Scholar 

  5. G.B. Olson, and M. Cohen: J. Less Common Met., 1972, vol. 28, pp. 107-118.

    Article  Google Scholar 

  6. 6. A.J. Bogers, and W.G. Burgers: Acta Met., 1964, vol. 12, pp. 255-261.

    Article  Google Scholar 

  7. 7. G. Han, J. He, S. Fukuyama, and K. Yokogawa, Acta. Mater., 1998, vol. 46, pp. 4559-4570.

    Article  Google Scholar 

  8. 8. C.L. Briant: Met. Trans. A, 1979, vol. 10, pp. 181-189.

    Article  Google Scholar 

  9. 9. T.P. Perng, and C.J. Altstetter: Met. Trans. A, 1987, vol. 18A, pp. 123-134.

    Article  Google Scholar 

  10. 10. R.M. Vennett, and G.S. Ansell: Trans. ASM., 1967, vol. 60, pp. 242-251.

    Google Scholar 

  11. 11. J.H. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, and D.W. Suh: Acta Mater., 2012, vol. 60, pp. 4085-4092.

    Article  Google Scholar 

  12. A.W. Thompson, and O. Buck: Met. Trans. A, 1976, vol. 7A, pp. 329-331.

    Article  Google Scholar 

  13. 13. V.M. Shyvaniuk, Y. Mine, and S.M. Teus: Scripta Mater., 2012, vol. 67, pp. 979-982.

    Article  Google Scholar 

  14. 14. Y. Mine, Z. Horita, and Y. Murakami: Acta Mater., 2009, vol. 57, pp. 2993-3002.

    Article  Google Scholar 

  15. J.P. Bressanelli, and A. Moskowitz: Trans. ASM, 1966, vol. 59, pp. 223-239.

    Google Scholar 

  16. 16. C.P. Livitsanos, and P.F. Thomson: Mater Sci. Eng., 1977, vol. 30, pp. 93-98.

    Article  Google Scholar 

  17. 17. D.V. Neff, T.E. Mitchell, and A.R. Troiano: Trans. ASM, 1969, vol. 62, 858-868.

    Google Scholar 

  18. I. Tamura, and T. Maki: Toward Improved Ductility Toughness. Climax Molybdenum Development Co (Japan) Ltd., Kyoto, 1972, pp. 183-193.

    Google Scholar 

  19. 19. I. Tamura, T. Maki, and H. Hato: Trans. Iron Steel Inst. Jpn., 1970, vol. 10, pp. 163-172.

    Google Scholar 

  20. J. Talonen: Doctoral Dissertation, Helsinki University, 2007.

  21. J. Talonen, P. Nenonen, G. Pape, and H. Hanninen: Met. Mater. A, 2005, vol. 36A, pp. 421-431.

    Article  Google Scholar 

  22. Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo: Mater. Sci. Eng. A, 2013, vol. 552, pp. 514-522.

    Article  Google Scholar 

  23. S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith: Met Trans. A, 1982, vol. 13A, pp. 619-626.

    Article  Google Scholar 

  24. 24. J.A. Lichtenfeld, M.C. Mataya, and C.J. Van Tyne: Met. Mater. Trans. A, 2006, vol. 37A, pp. 147-161.

    Article  Google Scholar 

  25. 25. A. Kundu, and P.C. Chakraborti: J. Mater. Sci., 2010, vol. 45, pp. 5482-89.

    Article  Google Scholar 

  26. 26. A.M. Brass, and J. Chene: Corr. Sci., 2006, vol. 48, pp. 3222-3242.

    Article  Google Scholar 

  27. 27. J.P. Hirth: Met. Trans. A, 1980, vol. 11A, pp. 861-890.

    Article  Google Scholar 

  28. 28. H. Matsui, H. Kimura, and S. Moriya: Mater. Sci. Eng., 1979, vol. 40, pp. 207-216.

    Article  Google Scholar 

  29. 29. C.D. Beachem: Met. Trans., 1972, vol. 3, pp. 437-451.

    Article  Google Scholar 

  30. D.M. Bromley: Master Thesis, University of British Columbia, 2005.

  31. 31. G. Schuster, and C.J. Altstetter: Met. Trans. A, 1983, vol. 14A, pp. 2085-2090.

    Article  Google Scholar 

  32. 32. K.J.L. Iyer: Scripta Met., 1972, vol. 6, pp. 721-726.

    Article  Google Scholar 

  33. K. Tao, H. Choo, H. Li, B. Clausen, J.E. Jin, and Y.K. Lee: Appl. Phys. Lett., 2007, vol. 90, pp. 101911-1–3.

  34. K.I. Sugimoto, M. Kobayashi, and S.I. Hashimoto: Met. Trans. A, 1992, vol. 23A, pp. 3085-3091.

    Article  Google Scholar 

  35. 35. E.C. Oliver, P.J. Withers, M.R. Daymond, S. Ueta, and T. Mori: Appl. Phys. A, 2002, vol. 74, pp. S1143-S1145.

    Article  Google Scholar 

  36. 36. I. Tamura: Met. Sci., 1982, vol. 16, pp. 245-253.

    Article  Google Scholar 

  37. 37. K. Spencer, J.D. Emburry, K.T. Conlon, M. Veron, and Y. Brechet: Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 873-881.

    Article  Google Scholar 

  38. 38. G.W. Form, and W.M. Baldwin: Trans ASM, 1956, vol. 48, pp. 474-485.

    Google Scholar 

  39. 39. N.S. Stoloff, and R.G. Davies: Acta Met., 1964, vol. 12, pp. 473-485.

    Article  Google Scholar 

  40. 40. M.J. Marcinkowski, and D.S. Miller: Phil. Mag., 1961, vol. 6, pp. 871-893.

    Article  Google Scholar 

  41. Y.S. Kim, S.S. Kim, D.W. Kim: Proc. Trans. Korean Nucl. Soc. Spring Meeting, Korea Nuclear Society, 2011. pp. 857–58.

  42. 42. A. H. Cottrell, In: A Seminar on Relation of Properties to Microstructures, Cleveland: American Society for Metals, 1954. pp. 131-162.

    Google Scholar 

  43. 43. V. Gerold, and H.P. Karnthaler: Acta Met., 1989, vol. 37, pp. 2177-2183.

    Article  Google Scholar 

  44. 44. N. Clement, D. Caillard, and J.L. Martin: Acta Met., 1982, vol. 32, pp. 961-975.

    Article  Google Scholar 

  45. 45. J. Konrad, S. Zaefferer, A. Schneider, D. Raabe, and G. Frommeyer: Intermetallics, 2005, vol. 13, 1304-1312.

    Article  Google Scholar 

  46. 46. P.B. Littlewood, Phys. Rev. B, 1986. Vol. 34, pp. 1363-1366.

    Article  Google Scholar 

  47. 47. RW Cahn: Intermetallics, 1999, vol. 7, pp. 1089-1094.

    Article  Google Scholar 

  48. 48. A. Marucco, and B. Nath: J. Mater. Sci., 1988, vol. 23, pp. 2107-2114.

    Article  Google Scholar 

  49. 49. Y.S. Kim, W.Y. Maeng, and S.S. Kim: Acta Mater. 2015, vol. 83, pp. 507-515.

    Article  Google Scholar 

  50. 50. T.B. Flanagan, A.P. Craft, T. Kuji, K. Baba, and Y. Sakamoto: Scripta Met., 1986, vol. 20, pp. 1745-1750.

    Article  Google Scholar 

  51. 51. Y. Fukai, Y. Shizuku, and Y. Kurokawa: J Alloys Compd., 2001, vol. 329, pp. 195-201.

    Article  Google Scholar 

  52. 52. T. Hiroi, Y. Fukai, and K. Mori: J Alloys Compd., 2005, vol. 404-406, pp. 252-255.

    Article  Google Scholar 

  53. U. Ehrnsten, T. Saukkonen, W. Karlsen, and H. Hanninen: 14th Conf. Env. Mater. Deg. in Nuclear Power Systems, T. Allen, J. Busby, G. Ilevbare, eds., TMS, VA, 2009, pp. 910–19.

  54. 54. M.P. Manahan, R. Kohli, J. Santucci, and P. Sipush: Nucl. Eng. Des., 1989, vol. 113, pp. 297-321.

    Article  Google Scholar 

  55. 55. S.D. Prokoshkin, L.M. Kaputkina, and M.L. Bernshtein: Scripta Met., 1989, vol. 20, pp. 299-304.

    Article  Google Scholar 

  56. 56. C. Kaito, Y. Saito, and K. Fujita: J. Appl. Phys., 1989, vol. 28, pp. L694-L696.

    Article  Google Scholar 

  57. 57. A. Chamberod, J. Laugier, and J.M. Penisson: J. Mag. Mag. Mater., 1979, vol. 10, pp. 139-144.

    Article  Google Scholar 

  58. 58. G. Hausch, and H. Warlimont, Phys. Letters A, 1971, vol. 36A, pp. 415-416.

    Article  Google Scholar 

  59. 59. G. Hausch, H. Warlimont: Acta Met., 1973, vol. 21, pp. 401-413.

    Article  Google Scholar 

  60. 60. S. Kachi, Y. Bando, and S. Higuchi: J. J. Appl. Phys., 1962, vol. 1, pp. 307-313.

    Article  Google Scholar 

  61. 61. N.S. Stoloff, and R.G. Davies: Progress in Materials Science, 1968, vol. 13, pp. 1-84.

    Article  Google Scholar 

  62. 62. M.G. Mendiratta, S.K. Ehlers, and H.A. Lipsitt: Met. Trans. A, 1987, vol. 18A, pp. 509-518.

    Article  Google Scholar 

  63. 63. A. Saha, J. Jung, and G.B. Olson: J. Computer-Aided Mater. Des., 2007, vol. 14, pp. 201-233.

    Article  Google Scholar 

  64. 64. A.Z. Menshikov, V.E. Arkhipov, A.I. Zakharov, and S.K. Sidorov, Fiz. Met. Metalloved., 1972, vol. 34, pp. 309-315.

    Google Scholar 

  65. 65. C.B. Post, and W.S. Eberly: Trans. ASM, 1947, vol. 39, pp. 868-890.

    Google Scholar 

Download references

Acknowledgments

This work was carried out as a part of the Nuclear R&D Program funded by the Korean Ministry of Science, ICT and Future Planning. Special thanks are due to S.S. Lee who conducted neutron diffraction experiments at KAERI and to H.M. Choe who thoroughly reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Suk Kim.

Additional information

Manuscript submitted May 9, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.S., Bak, S.H. & Kim, S.S. Effect of Strain-Induced Martensite on Tensile Properties and Hydrogen Embrittlement of 304 Stainless Steel. Metall Mater Trans A 47, 222–230 (2016). https://doi.org/10.1007/s11661-015-3198-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3198-4

Keywords

Navigation