Skip to main content
Log in

Fracture and fractography of metastable austenites

  • Mechanical Behavior
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

External test variables such as rate and temperature, and changes in alloy composition are shown to have a number of effects on the fracture of high-strength, metastable austenitic steels. One rate-dependent phenomenon is an unusual fracture mode transition wherein a flat mode changes to a shear mode when the amount of transformation product in the vicinity of the crack tip is reduced by adiabatic heating. The point at which this happens in any one test is dependent upon the velocity of the slowly growing crack which in turn is dependent upon the crosshead rate. Because of this rate effect, the plane stress fracture toughness decreases by as much as 30 pct at higher crosshead rates. Fractographically, it was ascertained that at room temperature, both phases failed in a ductile manner, but at −196°C, martensite containing greater than about 0.27 wt pct C would cleave. This resulted in a “ductile-brittle” transition in metastable austenites at −196°C as a function of carbon content. Other compositional variations change the austenite stability which controls the amount of strain-induced marteniste occurring at the crack tip. It is shown that a plane stress fracture toughness (K C) approaching 500,000 psi-in.1/2 may be achieved by decreasing the stability of the austenite. The variation ofK c with austenite stability agrees qualitatively with a theoretical model for the invariant shear contribution to the fracture toughness of metastable austenites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. S. Pellini: NRL Report 6957, September, 1969.

  2. L. Raymond:Fracture: Proc. of the Second Tewksbury Symp., p. 241, 1969.

  3. S. J. Matas, M. Hill, and H. P. Munger:Metals Eng. Quart. ASM, 1963, vol. 3, no. 3.

  4. S. D. Antolovich:Trans. TMS-AIME, 1968, vol. 242, p. 2371.

    Google Scholar 

  5. W. W. Gerberich, P. L. Hemmings, V. F. Zackay, and E. R. Parker: inFracture 1969, P. L. Pratt, ed., p. 288, Chapman and Hall, Ltd., London, 1969.

    Google Scholar 

  6. V. F. Zackay, E. R. Parker, D. Fahr, and R. Busch:Trans. Quart. ASM, 1967, vol. 60, no. 2, p. 252.

    CAS  Google Scholar 

  7. W. W. Gerberich, G. Thomas, E. R. Parker, and V. F. Zackay:Second Intern. Conf. on the Strength of Metals and Alloys, III, p. 894, Asilomar, Calif., August, 1970.

  8. W. W. Gerberich, P. L. Hemmings, M. D. Merz, and V. F. Zackay:Trans. Quart. ASM, 1968, vol. 61, no. 4, p. 843.

    CAS  Google Scholar 

  9. W. F. Brown, Jr. and J. E. Srawley:ASTM Spec. Tech. Publ. 410, p. 130, Philadelphia, 1966.

    Google Scholar 

  10. G. R. Irwin:Weld. J. Res. Suppl., November 1962, p. 519S.

  11. K. Schönert and R. Weichert:Chem. Ing. Techn., 1968, vol. 41, p. 295.

    Article  Google Scholar 

  12. C. Dokko: UCRL Report 19068, University of California, Berkeley, September, 1969.

    Google Scholar 

  13. W. W. Gerberich, P. L. Hemmings, and V. F. Zackay:Trans. TMS-AIME, 1969, vol. 245, p. 1126.

    Google Scholar 

  14. C. Kittel:Solid State Physics, J. Wiley & Sons, New York, 1956.

    Google Scholar 

  15. C. J. Smithells:Metals Reference Book, Vol. II, Butterworths and Co, London, 1962.

    Google Scholar 

  16. J. Weertman: inProc 1st Intern. Conf. on Fract., Vol. 1, T. Yokobori, T. Kawasaki, and J. Swedlow, eds., p. 193, Japan Soc. for Strength and Fracture of Materials, Tokyo, 1965.

    Google Scholar 

  17. R. M. N. Pelloux: inFracture 1969, P. L. Pratt, ed., p. 731, Chapman and Hall, Ltd., London, 1969.

    Google Scholar 

  18. V. F. Zackay, W. W. Gerberich, and E. R. Parker, inFracture, Vol. 1, H. Liebowitz, ed., p. 396, Academic Press, New York, 1968.

    Google Scholar 

  19. G. Chanani: Ph.D. Thesis, Univ. of Calif., Berkeley, 1970.

  20. W. W. Gerberich and J. Birat:Intern. J. Fract. Mechanics, 1971, vol. 7, p. 108.

    Google Scholar 

  21. H. Bernstein and G. C. Yound: NAVORD Report 6496 (Part 21, NRL 108), Naval Res. Lab., January, 1960.

  22. Rept. ML-TDR 64-236, Boeing-North American, Wright Field, October, 1964.

Download references

Author information

Authors and Affiliations

Authors

Additional information

W. W. GERBERICH, formerly with the Lawrence Radiation Laboratory, Berkeley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerberich, W.W., Hemmings, P.L. & Zackay, V.F. Fracture and fractography of metastable austenites. Metall Trans 2, 2243–2253 (1971). https://doi.org/10.1007/BF02917557

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02917557

Keywords

Navigation