Skip to main content
Log in

Tearing Resistance Properties of Cr-Mo Steels with Internal Hydrogen Determined by the Potential Drop Method

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The tearing resistance, dJ/da, of conventional 2.25Cr-1Mo steels and a V-bearing steel (2.25Cr-1Mo-0.3V steel) with internal hydrogen was measured using the effective offset potential drop method. Internal hydrogen refers to test specimens that are precharged (thermally charged) prior to testing. In general, Cr-Mo steels, used widely in the refining and petrochemical industries, are susceptible to temper embrittlement. However, very few studies have dealt with the effects of hydrogen and temper embrittlement on the tearing resistance. Test specimens were prepared by subjecting them to normalizing, tempering, and post-weld heat treatments that simulated actual conditions. Some specimens were embrittled by step cooling. Hydrogen substantially reduced dJ/da for all samples except for that for the V-bearing steel, and temper embrittlement caused additional adverse effects on dJ/da for samples with internal hydrogen for which the temper embrittlement parameter, i.e., the J-factor, was large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\( a_{(i)} \) :

Current crack length

\( a_{0} \) :

Initial fatigue precrack length

\( A \) :

Plane area due to material removal for machining integral knife edges shown in Figure 3

\( A_{0} \) :

Plane area of compact tension (CT) specimen shown in Figure 3

\( b_{(i)} \) :

Current uncracked ligament \( = W - a_{(i)} \)

B :

Specimen thickness

\( B_{N} \) :

Specimen net thickness

\( C(t,\,x,\,y) \) :

Hydrogen content at an arbitrary location at time t

\( C_{0} \) :

Initial hydrogen content

\( \bar{C} \) :

Average hydrogen content in an uncracked region of a CT specimen

\( \bar{C}^{A} \) :

Area-averaged hydrogen content in an uncracked region of a CT specimen

\( D \) :

Diffusivity of hydrogen

\( E \) :

Young’s modulus

2H :

Specimen height

\( J_{{a = a_{0} }} \) :

J-integral using an initial fatigue precrack length \( a_{0} \)

\( J_{0} \) :

Threshold fracture toughness, \( J_{{a = a_{0} }} \), at the onset of subcritical crack growth

\( J_{{ ( {\text{i)}}}} \) :

Current value of J-integral using the current crack length \( a_{(i)} \)

\( J_{\text{el(i)}} \, \) :

Current elastic component of \( J_{{ ( {\text{i)}}}} \)

\( J_{\text{pl(i)}} \, \) :

Current plastic component of \( J_{{ ( {\text{i)}}}} \)

JPVRC:

Japan Pressure Vessel Research Council

J-factor:

\( ( {\text{Pct}}\;{\text{Si}} + {\text{Pct}}\;{\text{Mn)}} \times ( {\text{Pct}}\;{\text{P}} + {\text{Pct}}\;{\text{Sn)}} \times 10^{4} \)

\( t \) :

Time (hour)

\( V \) :

Measured dc-potential drop (PD) voltage

\( V_{r} \) :

Reference crack dc-voltage

\( V_{\text{eff}} \) :

Effective dc-potential drop voltage

\( V_{{{\text{eff}},r}} \) :

Effective reference crack dc-voltage

\( W \) :

Specimen width

\( P_{(i)} \) :

Current load

\( Y \) :

Lead-out distance

\( \beta \) :

Arbitrary constant to Make the slope of the \( \xi \) vs \( J_{{a = a_{0} }} \) plot equal to zero

\( \nu \) :

Poisson’s ratio

\( v_{i} \) :

Current load-line displacement

\( v_{{{\text{pl}}(i)}} \) :

Plastic part of the load-line displacement

\( \xi \) :

Offset dc-potential drop

1/2T-CT:

Half size of 1T-CT specimen

1T-CT(1/2):

Half size of 1T-CT specimen, except for the 25.4-mm-thick sample

References

  1. C. A. Zapffe, and C. E. Sims: Metals & Alloys, 1940, vol. 12, pp.145-151.

    Google Scholar 

  2. A. R. Troiano: Transactions of the ASM, 1960, vol. 52, pp.54-80.

    Google Scholar 

  3. D. G. Weslake: Transactions of the ASM, 1969, vol. 62, pp.1000-1006.

    Google Scholar 

  4. R. A. Oriani and E. H. Josephic: Acta Metallurgica, 1974, vol. 22, pp.1065-1074.

    Article  Google Scholar 

  5. H. K. Birnbaum, P. Sofronis (1994) Mater. Sci. Eng., 176:191-202.

    Article  Google Scholar 

  6. R P Gangloff and B P Somerday: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies - The Problem, its characterisation and Effects on Particular Alloy Classes, Woodhead Publishing, Cambridge UK, 2012.

    Book  Google Scholar 

  7. Y. Tanaka, S. Aihara, S. Konosu, K. Hayashi, M. Yuga, H. Yamamoto, N. Ohtsuka, and H. Mimura: Proceedings of ASME, 2006, Paper No. PVP2006-ICPVT11-93360.

  8. H. Shimazu, S. Konosu, Y. Tanaka, M. Yuga, H. Yamamoto, N. Ohtsuka (2013) ASME J. Press. Vessel Technol. 135(2):1–7.

    Article  Google Scholar 

  9. P.C. Paris, H. Tada, A. Zahoor, and H. Ernst: ASTM STP668, 1979, pp. 251–65.

  10. ASTM E1820-11: Annual book of ASTM standards, “Standard Test Method for Measurement of Fracture Toughness,” 2011.

  11. ASTM E647-11: Annual book of ASTM standards, “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” 2011.

  12. ASTM E1737-96: Annual book of ASTM standards, “Standard Test Method for J-Integral Characterization of Fracture Toughness,” 1996.

  13. M. A. Hicks and A. C. Pickard: Int. Journal of Fracture, 1982, vol. 20, pp.91-101.

    Article  Google Scholar 

  14. T. Sakai, K. Asami, M. Katsumata, H. Takada and O. Tanaka: in Proceedings of 1st. Int. Conf. on Current Solution to Hydrogen Problems in Steels, C.G. Interrant and G.M. Pressouyre, eds., American Society for Metals, Metals Park, 1982, pp. 340–48.

  15. E. C. Horning, M. G. Horning, D. I. Carroll, I. Dzidic, and R. N. Stillwell, Analytical Chemistry, 1973, vol. 45, no. 6, pp.936-943.

    Article  Google Scholar 

  16. W.G. Clark, Jr., and L.D. Landes: ASTM STP610, 1972, pp. 108–27.

  17. T. Iwadate, T. Nomura and J. Watanabe, Corrosion, 1988, vol. 44, no. 2, pp.103-112.

    Article  Google Scholar 

  18. S. Pillot and L. Coudreuse: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies—The Problem, Its Characterisation and Effects on Particular Alloy Classes, R.P. Gangloff and B.P. Somerday, eds., Woodhead Publishing, Cambridge, U.K., 2012, pp. 51–93.

  19. G.A. Young, Jr., E. Richey, and D.S. Morton: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies—The Problem, Its Characterisation and Effects on Particular Alloy Classes, R.P. Gangloff and B.P. Somerday, eds., Woodhead Publishing, Cambridge, U.K., 2012, pp. 149–76.

  20. H. H. Johnson: Material Research and Standard, 1965, vol. 5, pp.442-445.

    Google Scholar 

  21. H.J. Cialone and J.H. Holbrook: ASTM STP962, 1988, pp. 134–52.

  22. H. P. V. Leeuwen: Eng. Fract. Mec., 1974, vol. 6, no. 1, pp.141-161.

    Article  Google Scholar 

  23. P. Sofronis and R. M. McMeeking: J. Mech. Phys. Solids, 1989, vol. 37, no. 3, pp.317-350.

    Article  Google Scholar 

  24. Y. Wada, Y. Tanaka, T. Iwadate, T. Ohmi and A. T. Yokobori, Jr.: J. Jpn. Inst. Met., 2007, vol. 71, no. 9, pp. 772-780.

    Article  Google Scholar 

  25. JPVRC, Measurement Method and Evaluation of the Hydrogen Embrittlement Threshold Stress Intensity Factor (KIH), The Iron and Steel Institute of Japan, Tokyo, 1989 (in Japanese).

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Number 25420006. The authors would like to thank the TG 8 subcommittee of JPVRC for their donation of specimens. We also would like to express our gratitude to Mr. N. Mukaimachi and Mr. S. Kanamaru of JGC Corporation for their assistance in finite element analysis modeling, and to Mr. S. Takagi, former graduate student at Ibaraki University, for his assistance during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Konosu.

Additional information

Manuscript submitted August 28, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konosu, S., Shimazu, H. & Fukuda, R. Tearing Resistance Properties of Cr-Mo Steels with Internal Hydrogen Determined by the Potential Drop Method. Metall Mater Trans A 46, 5626–5637 (2015). https://doi.org/10.1007/s11661-015-3145-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3145-4

Keywords

Navigation