Skip to main content

Advertisement

Log in

On the Achievement of Nanostructured Interstitial Free Steel by Four-Layer Accumulative Roll Bonding Process at Room Temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the four-layer accumulative roll bonding (ARB) process at room temperature for nanostructuring the interstitial free (IF) steel was used for the first time. Hardness and tensile tests were performed and the microstructure was characterized using scanning transmission electron microscopy. It was found that the grain size decreased into the nanostructured domain after fourth cycle, reaching grain sizes of smaller than 100 nm. The stored energy was retained in the material until the continuous dynamic recrystallization led to nanostructuring of the IF steel. The dislocation density was measured by microhardness indentation size effect using the Nix–Gao model. The results indicated that an increase in the number of ARB cycles leads to increase in the dislocation density. The dislocation density increased from 2.02 × 109 cm−2 for initial sample to 9.47 × 109 cm−2 after fourth cycle. The yield strength of the IF steel after fourth cycle was 10.8 times (909 MPa) higher than that of the initial sample (84 MPa). Finally, the contribution of individual mechanisms such as the grain refinement, dislocation, and precipitation in strengthening of the IF steel were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. [1] R.Z. Valiev: Nat. Mater., 2004, vol. 3, pp. 511-6.

    Article  Google Scholar 

  2. [2] R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov: Mater. Sci. Eng. A, 1993, vol. 168, pp. 141-8.

    Article  Google Scholar 

  3. [3] M.J. Zehetbauer and Y.T. Zhu: Bulk Nanostructured Materials, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2009.

    Book  Google Scholar 

  4. [4] R.Z. Valiev and T.G. Langdon: Progr. Mater. Sci., 2006, vol. 51, pp. 881-981.

    Article  Google Scholar 

  5. [5] R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103-89.

    Article  Google Scholar 

  6. [6] A.P. Zhilyaev and T.G. Langdon: Progr. Mater. Sci., 2008, vol. 53, pp. 893-979.

    Article  Google Scholar 

  7. [7] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida: CIRP Annals–Manufact. Tech., 2008, vol. 57, pp. 716-35.

    Article  Google Scholar 

  8. [8] R. Jamaati, M.R. Toroghinejad, J. Dutkiewicz, and J.A. Szpunar: Mater. Design, 2012, vol. 35, pp. 37-42.

    Article  Google Scholar 

  9. [9] C.W. Schmidt, C. Knieke, V. Maier, H.W. Hoppel, W. Peukert, and M. Goken: Scripta Mater., 2011, vol. 64, pp. 245-8.

    Article  Google Scholar 

  10. [10] R. Jamaati, M.R. Toroghinejad, and H. Edris: Mater. Sci. Eng. A, 2013, vol. 583, pp. 20-4.

    Article  Google Scholar 

  11. [11] M. Rezayat, A. Akbarzadeh, and A. Owhadi: Metall. Mater. Trans. A, 2012, vol. 43, pp. 2085-93.

    Article  Google Scholar 

  12. [12] R. Jamaati, M.R. Toroghinejad, and H. Edris: Mater. Design, 2014, vol. 54, pp. 168-73.

    Article  Google Scholar 

  13. [13] M. Alizadeh and M.H. Paydar: J. Alloy. Compd., 2010, vol. 492, pp. 231-5.

    Article  Google Scholar 

  14. [14] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong: Scripta Mater., 1998, vol. 39, pp. 1221-7.

    Article  Google Scholar 

  15. [15] M.R. Toroghinejad, F. Ashrafizadeh, and R. Jamaati: Mater. Sci. Eng. A, 2013, vol. 561, pp. 145-51.

    Article  Google Scholar 

  16. [16] Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579-83.

    Article  Google Scholar 

  17. [17] M. Raei, M.R. Toroghinejad, and R. Jamaati: Mater. Manufact. Process., 2011, vol. 26, pp. 1352-6.

    Article  Google Scholar 

  18. [18] M. Shaarbaf and M.R. Toroghinejad: Mater. Sci. Eng. A, 2008, vol. 473, pp. 28-33.

    Article  Google Scholar 

  19. [19] S. Pasebani and M.R. Toroghinejad: Mater. Sci. Eng. A, 2010, vol. 527, pp. 491-7.

    Article  Google Scholar 

  20. [20] N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa: Scripta Mater., 1999, vol. 40, pp. 795-800.

    Article  Google Scholar 

  21. [21] S.H. Lee, H. Utsunomiya, and T. Sakai: Mater. Trans., 2004, vol. 45, pp. 2177-81.

    Article  Google Scholar 

  22. [22] S. Tamimi, M. Ketabchi, and N. Parvin: Mater. Design, 2009, vol. 30, pp. 2556-62.

    Article  Google Scholar 

  23. [23] G. Krallics and J.G. Lenard: J. Mater. Process. Tech., 2004, vol. 152, pp. 154-61.

    Article  Google Scholar 

  24. [24] G. Purcek, O. Saray, I. Karman, and H.J. Maier: Metall. Mater. Trans. A, 2012, vol. 43, pp. 1884-94.

    Article  Google Scholar 

  25. [25] O. Saray, G. Purcek, I. Karaman, T. Neindorf, and H.J. Maier: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6573-83.

    Article  Google Scholar 

  26. [26] R. Jamaati, M.R. Toroghinejad, H. Edris, and M.R. Salmani: Mater. Design, 2014, vol. 56, pp. 359-67.

    Article  Google Scholar 

  27. [27] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Progr. Mater. Sci., 2014, vol. 60, pp. 130-207.

    Article  Google Scholar 

  28. [28] F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science Ltd., Oxford, U.K., 2004.

    Google Scholar 

  29. [29] W.D. Nixand H. Gao: J. Mech. Phys. Solids, 1998, vol. 46, pp. 411-25.

    Article  Google Scholar 

  30. [30] S. Graca, R. Colaco, P.A. Carvalho, and R. Vilar: Mater. Lett., 62 (2008, pp. 3812–3814.

    Article  Google Scholar 

  31. [31] W.D. Callister and D.G. Rethwisch: Materials Science Engineering: An Introduction, 8th ed., John Wiley and Sons, New York, NY, 2010.

    Google Scholar 

  32. [32] D.R. Askeland, P.P. Fulay, and W.J. Wright: The Science and Engineering of Materials, 6th ed., Cengage Learning, Stamford, CT, 2011.

    Google Scholar 

  33. [33] A. Sarkar, A. Bhowmik, and S. Suwas: Appl. Phys. A, 2009, vol. 94, pp. 943-8.

    Article  Google Scholar 

  34. [34] B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu, and N. Hansen: Acta Mater., 2004, vol. 52, pp. 1069-81.

    Article  Google Scholar 

Download references

Acknowledgments

The corresponding author gratefully acknowledges Mrs. Mahjoobeh Hatef for her good collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohollah Jamaati.

Additional information

Manuscript submitted November 28, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamaati, R., Toroghinejad, M.R., Amirkhanlou, S. et al. On the Achievement of Nanostructured Interstitial Free Steel by Four-Layer Accumulative Roll Bonding Process at Room Temperature. Metall Mater Trans A 46, 4013–4019 (2015). https://doi.org/10.1007/s11661-015-3001-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3001-6

Keywords

Navigation