Skip to main content
Log in

Microstructural characterization of ultrafine-grain interstitial-free steel by X-ray diffraction line profile analysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper highlights the microstructural features of commercially available interstitial free (IF) steel specimens deformed by equal channel angular pressing (ECAP) up to four passes following the route A. The microstructure of the samples was studied by different techniques of X-ray diffraction peak profile analysis as a function of strain (ε). It was found that the crystallite size is reduced substantially already at ε=2.3 and it does not change significantly during further deformation. At the same time, the dislocation density increases gradually up to ε=4.6. The dislocation densities estimated from X-ray diffraction study are found to correlate very well with the experimentally obtained yield strength of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989)

    Article  Google Scholar 

  2. C.C. Koch, Nanostruct. Mater. 9, 13 (1997)

    Article  Google Scholar 

  3. R. Valiev, Nat. Mater. 3, 511 (2204)

    Article  Google Scholar 

  4. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000)

    Article  Google Scholar 

  5. V.M. Segal, Mater. Sci. Eng. A 197, 157 (1995)

    Article  Google Scholar 

  6. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scr. Mater. 39, 1221 (1998)

    Article  Google Scholar 

  7. Y.T. Zhu, T.C. Lowe, Mater. Sci. Eng. A 291, 46 (2000)

    Article  Google Scholar 

  8. D.H. Shin, I. Kim, J. Kim, K.T. Park, Acta Mater. 49, 1285 (2001)

    Article  Google Scholar 

  9. T.G. Langdon, Mater. Sci. Eng. A 462, 3 (2007)

    Article  Google Scholar 

  10. I.J. Beyerlein, L.S. Tóth, C.N. Tomé, S. Suwas, Philos. Mag. 87, 885 (2007)

    Article  ADS  Google Scholar 

  11. Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, E.J. Lavernia, Appl. Phys. Lett. 92, 081903 (2008)

    Article  ADS  Google Scholar 

  12. D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, R.Z. Valiev, Appl. Phys. Lett. 79, 611 (2001)

    Article  ADS  Google Scholar 

  13. P.B. Pragnell, J.R. Bowen, A. Gholinia, in Proceedings of the 22nd 559 Riso International Symposium on Materials Science, Science of Metastable and Naocrystalline Alloys, ed. by A.R. Dinesen M. Eldrup, D. Juul Jensen, S. Linderoth, T.B. Pederson, N.H. Pryds, A. Schroder Pedersen, J.A. Werst, Roskilde, Denmark (2001), p. 105

  14. J.R. Bowen, P.B. Pragnell, F.J. Humphreys, Mater. Sci. Technol. 16, 1246 (2000)

    Article  Google Scholar 

  15. W. Skrotzki, N. Schherbaum, C.-G. Oertel, R. Arruffat-Massion, S. Suwas, L.S. Toth, Acta Mater. 55, 2013 (2007)

    Article  Google Scholar 

  16. S. Suwas, R. Arruffat-Massion, L.S. Toth, J.J. Fundenburger, A. Eberhardt, W. Skrotzki, Metall. Mater. Trans. A 37, 739 (2007)

    Article  Google Scholar 

  17. T. Ungar, Scr. Mater. 51, 777 (2004)

    Article  Google Scholar 

  18. D. Balzar N. Audebrand, M.R. Daymond, A. Fitch, A. Hewat, J.I. Langford, A. Le Bail, D. Louër, O. Masson, C.N. McCowan, N.C. Popa, P.W. Stephens, B.H. Toby, J. Appl. Crystallogr. 37, 911 (2004)

    Article  Google Scholar 

  19. I. Groma, Phys. Rev. B 57, 7535 (1998)

    Article  ADS  Google Scholar 

  20. J. Gubicza, N.H. Nam, L. Balogh, R.J. Hellmig, V.V. Stolyarov, Y. Estrin, T. Ungár, J. Alloys Comp. 378, 248 (2004)

    Article  Google Scholar 

  21. J.Y. Chang, G.H. Kim, I.G. Moon, Scr. Mater. 44, 331 (2001)

    Article  Google Scholar 

  22. J. Gubicza, Gy. Krallics, I. Schiller, D. Malgin, Mater. Sci. Forum 473–474, 453 (2005)

    Article  Google Scholar 

  23. A.P. Zhilyaev J. Gubicza, G. Nurislamova, A. Revesz, S. Surinach, M.D. Baro, T. Ungar, Phys. Stat. Sol. (a) 198, 263 (2003)

    Article  ADS  Google Scholar 

  24. J.P. Mathieu, S. Suwas, A. Eberhardt, L.S. Toth, P. Moll, J. Mater. Process. Technol. 173, 29 (2006)

    Article  Google Scholar 

  25. D. Bhattacharjee, R.K. Ray, S. Suwas, A. Bhowmik, Patent

  26. D. Balzar, in Defect and Microstucture Analysis by Diffraction, ed. by R.L. Snyder, J. Fiala, H.J. Bunge (1999), p. 94

  27. G. Caglioti, A. Paoletti, F.P. Ricci, Nucl. Instr. 3, 223 (1958)

    Article  Google Scholar 

  28. A.R. Stokes, Proc. Phys. Soc. Lond. 61, 382 (1948)

    Article  ADS  Google Scholar 

  29. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    Article  Google Scholar 

  30. A.J.C. Wilson, Proc. Phys. Soc. 80, 286 (1962)

    Article  MATH  Google Scholar 

  31. A. Borbely, I. Groma, Appl. Phys. Lett. 79, 1772 (2001)

    Article  ADS  Google Scholar 

  32. T. Ungar, G. Tichy, Phys. Stat. Sol. (a) 171, 425 (1999)

    Article  ADS  Google Scholar 

  33. T. Ungar, H. Mughrabi, D. Rönnpagel, M. Wilkens, Acta Metall. 32, 333 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apu Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, A., Bhowmik, A. & Suwas, S. Microstructural characterization of ultrafine-grain interstitial-free steel by X-ray diffraction line profile analysis. Appl. Phys. A 94, 943–948 (2009). https://doi.org/10.1007/s00339-008-4870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4870-y

PACS

Navigation