Skip to main content
Log in

High-Temperature Deformation Processing Map Approach for Obtaining the Desired Microstructure in a Multi-component (Ni-Ti-Cu-Fe) Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An equiatomic NiTiCuFe multi-component alloy with simple body-centered cubic (bcc) and face-centered cubic solid-solution phases in the microstructure was processed by vacuum induction melting furnace under dynamic Ar atmosphere. High-temperature uniaxial compression experiments were conducted on it in the temperature range of 1073 K to 1303 K (800 °C to 1030 °C) and strain rate range of 10−3 to 10−1 s−1. The data generated were analyzed with the aid of the dynamic materials model through which power dissipation efficiency and instability maps were generated so as to identify the governing deformation mechanisms that are operative in different temperature–strain rate regimes with the aid of complementary microstructural analysis of the deformed specimens. Results indicate that the stable domain for the high temperature deformation of the multi-component alloy occurs in the temperature range of 1173 K to 1303 K (900 °C to 1030 °C) and \( \dot{\varepsilon } \) range of 10−3 to 10−1.2 s−1, and the deformation is unstable at T = 1073 K to 1153 K (800 °C to 880 °C) and \( \dot{\varepsilon } \) = 10−3 to 10−1.4 s−1 as well as T = 1223 K to 1293 K (950 °C to 1020 °C) and \( \dot{\varepsilon } \) = 10−1.4 to 10−1 s−1, with adiabatic shear banding, localized plastic flow, or cracking being the unstable mechanisms. A constitutive equation that describes the flow stress of NiTiCuFe multi-component alloy as a function of strain rate and deformation temperature was also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Tests were also conducted at 973 K (700 °C); the specimens failed in brittle manner, however. Hence, that data were not utilized in this paper.

  2. For the construction of the processing maps, typically data are also generated at strain rates of 1, 10, and 100 s−1. We did not pursue these higher strain rates in this paper because the alloy’s brittleness at these high rates.

References

  1. A. Inoue and X.M. Wang: Acta Mater. 2000, vol. 48, pp. 1383-95.

    Article  Google Scholar 

  2. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Prog. Mater. Sci., 2014, vol. 61, pp. 1-93.

    Article  Google Scholar 

  3. A.R. Ruffa: Phys. Rev. B, 1982, vol. 25, pp. 5895-900.

    Article  Google Scholar 

  4. J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen: Mater. Sci. Forum, 2007, vol. 560, pp. 1-9.

    Article  Google Scholar 

  5. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299-303.

    Article  Google Scholar 

  6. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Intermetallics, 2000, vol. 18, pp. 1758-65.

    Article  Google Scholar 

  7. H.-P. Chou, Y.-S. Chang, S.-K. Chen, and J.-W. Yeh: Mater. Sci. Eng. B, 2009, vol. 163, pp. 184-89.

    Article  Google Scholar 

  8. T.-T. Shun, L.-Y. Chang, and M.-H. Shiu: Mater. Charact., 2012, vol. 70, pp. 63-67.

    Article  Google Scholar 

  9. M.S. Lucas, G.B. Wilks, L. Mauger, J.A. Munoz, O.N. Senkov, E. Michel, J. Horwath, S.L. Semiatin, M.B. Stone, and D.L. Abernathy: Appl. Phys. Lett., 2012, vol. 100, pp. 251907-4.

    Article  Google Scholar 

  10. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Adv. Eng. Mater., 2008, vol. 10, pp. 534-38.

    Article  Google Scholar 

  11. X. Yang and Y. Zhang: Mater. Chem. Phys., 2012, vol. 132, pp. 233-38.

    Article  Google Scholar 

  12. S. Guo and C.T. Liu: Prog. Nat. Sci. Mater. Int., 2011, vol. 21, pp. 433–46.

    Article  Google Scholar 

  13. S. Guo, C. Ng, J. Lu, and C.T. Liu: J. Appl. Phys., 2011, vol. 109, pp. 103505.

    Article  Google Scholar 

  14. A. Inoue and A. Takeuchi: Mater. Sci. Eng. A, 2004, vol. 375, pp. 16-30.

    Article  Google Scholar 

  15. A. Takeuchi and A. Inoue: Mater. Trans. JIM, 2000, vol. 41, pp. 1372-78.

    Article  Google Scholar 

  16. M.-x. Ren, B.-s. Li, and H.-z. Fu: Trans. Nonferr. Metal Soc., 2013, vol. 23, pp. 991-95.

    Article  Google Scholar 

  17. Y.-L. Chen, C.-W. Tsai, C.-C. Juan, M.-H. Chuang, J.-W. Yeh, T.-S. Chin, and S.-K. Chen: J. Alloys Compd., 2010, vol. 506, pp. 210-15.

    Article  Google Scholar 

  18. Y. Zhang, S.G. Ma, and J.W. Qiao: Metall. Mater. Trans. A, 2012, vol. 43, pp. 2625-30.

    Article  Google Scholar 

  19. J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chou: Metall. Mater. Trans. A, 2004, vol. 35, pp. 2533-36.

    Article  Google Scholar 

  20. C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, and S.-Y. Chang: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1263-71.

    Article  Google Scholar 

  21. A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov: Mater. Sci. Eng. A, 2012, vol. 533, pp. 107-18.

    Article  Google Scholar 

  22. R.Z. Valiev and I.V. Alexandrov: IKTs Akademkniga, Moscow, 2007.

  23. G.A. Salishchev, R.M. Imayev, O.N. Senkov, V.M. Imayev, N.K. Gabdullin, M.R. Shagiev, A.V. Kuznetsov, and F.H. Froes: Mater. Sci. Eng. A, 2000, vol. 286, pp. 236-43.

    Article  Google Scholar 

  24. G.A. Salishchev, R.I. Imayevare, O.N. Senkov, and F.H. Froes: JOM, 2000, vol. 52, pp. 46-48.

    Article  Google Scholar 

  25. S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, S.Y. Mironov, and S.L. Semiatin: Scr. Mater., 2004, vol. 51, pp. 1147-51.

    Article  Google Scholar 

  26. R.M. Imayev, N.K. Gabdullin, G.A. Salishchev, O.N. Senkov, V.M. Imayev, and F.H. Froes: Acta Mater., 1999, vol. 47, pp. 1809-21.

    Article  Google Scholar 

  27. S.V.S. NarayanaMurty, B. NageswaraRao, and B.P. Kashyap: Int. Mater. Rev., 2000, vol. 45, pp. 15–26.

    Article  Google Scholar 

  28. S.V.S. Narayana Murty and B. Nageswara Rao: J. Mater. Process. Technol., 2000, vol. 104, pp. 103-9.

    Article  Google Scholar 

  29. S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap (2003) Compos. Sci. Technol. 63, 119-35.

    Article  Google Scholar 

  30. S.V.S. Narayana Murty, B. Nageswara Rao, B.P. Kashyap (2005) J. Mater. Process. Technol., 166, 268-78.

    Article  Google Scholar 

  31. Y.V.R.K. Prasad and S. Sasidhara: Hot working guide: a compendium of processing maps, ASM international, Materials Park, OH, 1997.

    Google Scholar 

  32. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker: Metall. Trans. A, 1984, vol. 15, pp. 1883-92.

    Article  Google Scholar 

  33. C.-y. Hsu, J.-W. Yeh, S.-K. Chen, T.-T. Shun: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1465-69.

    Article  Google Scholar 

  34. C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang: Metall. Mater. Trans. A, 2005, vol. 36, pp. 881-93.

    Article  Google Scholar 

  35. M.-R. Chen, S.-J. Lin, J.-W. Yeh, M.-H. Chuang, S.-K. Chen, and Y.-S. Huang: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1363-69.

    Article  Google Scholar 

  36. Y.X. Zhuang, W.J. Liu, Z.Y. Chen, H.D. Xue, and J.C. He: Mater. Sci. Eng. A, 2012, vol. 556, pp. 395-99.

    Article  Google Scholar 

  37. A.R. Miedema, A.K. Niessen, F.R. De Boer, R. Boom, and W.C.M. Mattens: Report, Philips Research Laboratories, Eindhoven, The Netherlands. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen: Cohesion in Metals. Transition Metals Alloys, North-Holland Publishing Co., Amsterdam, 1989.

  38. A.A. Guimaraes and J.J. Jonas: Metall. Trans. A, 1981, vol. 12, pp. 1655-66.

    Article  Google Scholar 

  39. Y. Liu, R. Hu, J. Li, H. Kou, H. Li, H. Chang, and H. Fu: Mater. Sci. Eng. A, 2008, vol. 497, pp. 283-89.

    Article  Google Scholar 

  40. H. Shi, A.J. McLaren, C.M. Sellars, R. Shahani, and R. Bolingbroke: Mater. Sci. Technol., 1997, vol. 13, pp. 210-16.

    Article  Google Scholar 

  41. M. Zhou and M.P. Clode: Mech. Mater., 1998, vol. 27, pp. 63-76.

    Article  Google Scholar 

  42. M. Zhou and M.P. Clode: Mater. Sci. Technol., 1997, vol. 13, pp. 818-24.

    Article  Google Scholar 

  43. T. Sheppard and A. Jackson: Mater. Sci. Technol., 1997, vol. 13, pp. 203-9.

    Article  Google Scholar 

  44. E.S. Puchi and M.H. Staia: Metall. Mater. Trans. A, 1995, vol. 26, pp. 2895-910.

    Article  Google Scholar 

  45. E.S. Puchi and M.H. Staia: Metall. Mater. Trans. A, 1998, vol. 29, pp. 2345-59.

    Article  Google Scholar 

  46. C.M. Sellars and W.J.M. Tegart: Int. Metall. Rev., 1972, vol. 17, pp. 1-24.

    Article  Google Scholar 

  47. C. Zener and J.H. Hollomon: J. Appl. Phys., 2004, vol. 15, pp. 22-32.

    Article  Google Scholar 

  48. S.V.S.N. Murty, M.S. Sarma, and B.N. Rao: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1581-82.

    Article  Google Scholar 

  49. H. Ziegler: Progress in Solid Mechanics, vol. 4, John Wiley and Sons, New York, 1963, pp. 93–193.

    Google Scholar 

  50. G. Meng, B. Li, H. Li, H. Huang, and Z. Nie: Mater. Sci. Eng. A, 2009, vol. 517, pp. 132-37.

    Article  Google Scholar 

  51. S.V.S.N. Murty and B.N. Rao: Mater. Sci. Eng. A, 1998, vol. 254, pp. 76-82.

    Article  Google Scholar 

  52. S.V.S.N. Murty and B.N. Rao: Mater. Sci. Eng. A, 1999, vol. 267, pp. 159-61.

    Article  Google Scholar 

  53. S.V.S.N. Murty, B.N. Rao, and B.P. Kashyap: J. Mater. Process. Technol., 2005, vol. 166, pp. 279-85.

    Article  Google Scholar 

  54. A. Biswas, G. Singh, S.K. Sarkar, M. Krishnan, and U. Ramamurty: Intermetallics, 2014, vol. 54, pp. 69-78.

    Article  Google Scholar 

  55. I. Sen, R.S. Kottada, and U. Ramamurty: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6157-65.

    Article  Google Scholar 

  56. V.V. Shastry, B. Maji, M. Krishnan, and U. Ramamurty: J. Mater. Res., 2011, vol. 26, pp. 2484-92.

    Article  Google Scholar 

  57. Y.V.R.K. Prasad: Ind. J. Technol., 1990, vol. 28, pp. 435-51.

    Google Scholar 

  58. Y.V.R.K. Prasad: J. Mater. Eng. Perform., 2003, vol. 12, pp. 638-45.

    Article  Google Scholar 

  59. T.-G. Nieh, J. Wadsworth, and O.D. Sherby: Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, 2005.

    Google Scholar 

  60. L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, and L. Zhou: Intermetallics, 2009, vol.17, pp. 266-69.

    Article  Google Scholar 

  61. A. Rollett, F.J. Humphreys, G.S. Rohrer, and M. Hatherly: Recrystallization and related annealing phenomena, 2nd ed., Pergamon Press, Elsevier, New York, 2004.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Director, (VSSC) for encouragement and permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niraj Nayan.

Additional information

Manuscript submitted July 14, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayan, N., Singh, G., Narayana Murty, S.V.S. et al. High-Temperature Deformation Processing Map Approach for Obtaining the Desired Microstructure in a Multi-component (Ni-Ti-Cu-Fe) Alloy. Metall Mater Trans A 46, 2201–2215 (2015). https://doi.org/10.1007/s11661-015-2799-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2799-2

Keywords

Navigation